

S.Y. B. Sc. (STATISTICS) SEMESTER III

Core course - I

COURSE TITLE: Probability Distribution–I COURSE CODE: 22US3STCCIPRDI [CREDITS - O2]

COURSE CODE: 22053STCCIPRDI [CREDITS - 02]
Course Learning Outcome
After the successful completion of the Course, the learner will be able to:
1. Determine the moments, cumulants using moment generating function
and cumulant generating function.
2. Evaluate various measures of the distributions and apply the appropriate
probability distribution depending on the data.
3. Apply the concept of MGF, CGF to obtain the results of the probability
distributions for bernoulli, binomial, Poisson, Uniform, Geometric and NBD
4. Study the recurrence relations of pmf, raw moments, central moments
and cumulants for various probability distributions.
5. Explain the concept of truncated probability distribution and determine
mean and variance of truncated binomial and poisson distribution.
6. Determine the marginal, conditional, correlation coefficient and
independence of the probability distributions from the joint probability
distributions.
7. Apply the technique of Jacobian and cumulative transformation to obtain
the probability distributions of the transformed variables.
8. Determine the moments of the joint distribution and derive the MGF or
marginal distributions Using MGF properties.
Module 1MGF, CGF, Bernoulli, Binomial and Poisson[12L]
Distribution
Learning Objectives:
This module is intended to
module is intended
1. To learn techniques such as Moment Generating Function (MGF) and
Cumulant Generating Function (CGF) methods for obtaining the raw
moments of the distributions.
2. To obtain various measures of the Bernoulli, Binomial and Poissor
distribution using MGF and CGF.
Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Find the moments of the distribution using suitable method
- 2. Obtain various measures using MGF and CGF and understand the relationship between Bernoulli, binomial and Poisson distribution.

1.1	Moment Generating Functions (MGF)	[2L]
	Definition (discrete and continuous random variables), obtain probability distribution from MGF, raw moments from MGF, properties of MGF : i) MGF of aX + b ii) MGF of sum of two independent r.v.s. along with the generalization Uniqueness property (only statement).	
1.2	Cumulant Generating Function (CGF)	[2L]
	Definition, cumulants from CGF, properties of CGF : i) Effect of shift of origin and scale ii) Additive property of cumulants Relationship between cumulants and the moments	
1.3	Bernoulli Distribution	[2L]
	Definition, MGF, CGF, moments, cumulants, mean, variance, skewness and kurtosis	
1.4	Binomial Distribution	[3L]
	Definition, MGF, CGF, moments, cumulants, mean, variance, mode, skewness and kurtosis, recurrence relationship for binomial probabilities, recurrence relationship for raw and central moments, cumulants, additive property, fitting of the distribution	
1.5	Poisson Distribution	[3L]
	Definition, MGF, CGF, moments, cumulants, mean, variance, skewness and kurtosis, mode, recurrence relationship for poisson probabilities, recurrence relationship for raw and central moments, additive property, conditional distribution of X given X + Y where X and Y are independent, fitting of the distribution	
References:	uction to the theory of statistics A AA Adapt FA Come	
 Introd Boyes, 	Third Edition; McGraw-Hill Book Company.	III, D. C.

 Introduction to Mathematical Statistics: R.V.Hogg, A.T. Craig; Fourth Edition; Collier McMillan Publishers. John E. Freund's Mathematical Statistics: I. Miller, M. Miller; Sixth Edition; Pearson Education Inc. Introduction to Mathematical Statistics: P.G. Hoel; Fourth Edition; John 						
 Wiley & Sons Inc. Fundamentals of Mathematical Statistics: S.C. Gupta, V.K. Kapoor; Eighth Edition; Sultan Chand & Sons. Mathematical Statistics: J.N. Kapur, H.C. Saxena; Fifteenth Edition; S. Chand & Company Ltd. An Outline of Statistical Theory Vol. I: A.M. Goon, M.K. Gupta, B. 						
Module 2	Uniform, Geometric, Negative Binomial, Truncated	[12L]				
Binomial and Truncated Poisson Distribution Learning Objectives: This module is intended to 1. Obtain various measures of Geometric, Negative Binomial, Uniform distribution using MGF / CGF method 2. Understand the concept of the truncated distribution and derive the truncated distribution for Binomial and Poisson Learning Outcome: After the successful completion of the module, the learner will be able to 1. Apply various properties of MGF to the Geometric, Negative Binomial, Uniform distribution 2. Obtain the distribution of truncated Binomial and truncated Poisson						
2.1	Uniform Distribution	[2L]				
	Definition, MGF, mean, variance, skewness, fitting of the distribution					
2.2	Geometric Distribution (two forms)	[3L]				
	Definition, mean, mode, variance, distribution function, MGF, CGF, moments. Cumulants, coefficient of skewness and kurtosis, lack of memory property, obtain the distribution of $X_1 = k/X_1 + X_2 = n$					

2.3	Negative Binomial Distribution (NBD)	[3L]				
	Definition, derivation of p.m.f., alternate form of NBD, mean, variance, MGF, CGF, monets, cumulants, skewness and kurtosis, recurrence relationship for NBD probabilities, NBD(k, p) as sum of the 'k' i.i.d. geometric variables with parameter 'p', Poisson distribution as a limiting case of NBD, fitting of the distribution					
2.4	Truncated Probability Distribution	[4L]				
	Definition, Binomial and Truncated Poisson Distribution (truncated at O), derivation of p.m.f., mean.					
References:						
• Introd	uction to the theory of statistics: A. M. Mood, F.A. Grayb	ill, D. C.				
Boyes,	Third Edition; McGraw-Hill Book Company.					
Introd	uction to Mathematical Statistics: R.V.Hogg, A.T. Craig; Fo	ourth				
Edition	n; Collier McMillan Publishers.	h [dition				
 JOHN E. Pearso 	n Education Inc	n Edition;				
 Introduction 	uction to Mathematical Statistics: P.G. Hoel: Fourth Editic	on∙ Iohn				
Wiley	& Sons Inc.	, joini				
Fundar	mentals of Mathematical Statistics: S.C. Gupta, V.K. Kapoo	or; Eighth				
Editior	n; Sultan Chand & Sons.	0				
 Mathe 	ematical Statistics: J.N. Kapur, H.C. Saxena; Fifteenth Editio	n; S. Chand				
& Con	npany Ltd.					
An Ou	tline of Statistical Theory Vol. 1: A.M. Goon, M.K. Gupta, 1	B.				
DasGu	pta; Third Edition; TheWorldPress Pvt. Ltd.					
Module 3	Joint Probability Function of Two Variables and	[12L]				
Leomine Ohi	I ransformation of Continuous Variables					
The module i	ectives:					
	arn probability distribution involving two random variable	20				
2 To apr	 To apply MCE method to bivariate distribution 					
3. To obtain the distribution of the transformed variables						
Learning Out	come:					
After the suc	After the successful completion of the module, the learner will be able to					
1. To obt	1. To obtain marginal, conditional distributions					
2. Check	the independence of the variables using MGF					

3. Derive the distribution of the transformed variables			
3.1	3.1 Joint Probability Function		
Discrete and continuous bivariate random variables, their probability function along with the properties. Marginal and conditional Distributions. Independence of Random Variables. Conditional Expectation & Variance. Regression Function. Coefficient of Correlation.			
3.2	MGF of bivariate random variable	[3L]	
	Definition, joint raw moments, M.G.F. of marginal distribution of r.v.s., properties		
3.3	Transformation of Random Variables	[5L]	
	Probability distribution of functions of r.v.s using cumulative distribution, Jacobian transformation and MGF		
 References: Introduction to the theory of statistics: A. M. Mood, F.A. Graybill, D. C. Boyes, Third Edition; McGraw-Hill Book Company. Introduction to Mathematical Statistics: R.V.Hogg, A.T. Craig; Fourth Edition; Collier McMillan Publishers. John E. Freund's Mathematical Statistics: I. Miller, M. Miller; Sixth Edition; Pearson Education Inc. Introduction to Mathematical Statistics: P.G. Hoel; Fourth Edition; John Wiley & Sons Inc. Fundamentals of Mathematical Statistics: S.C. Gupta, V.K. Kapoor; Eighth Edition; Sultan Chand & Sons. Mathematical Statistics: J.N. Kapur, H.C. Saxena; Fifteenth Edition; S. Chand & Company Ltd. An Outline of Statistical Theory Vol. 1: A.M. Goon, M.K. Gupta, B. 			

Question Paper Template S.Y. B. Sc. (STATISTICS) SEMESTER III Core Course- I COURSE TITLE: Probability Distribution-1 COURSE CODE: 22US3STCCIPRDI [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
1	4	8	10	-	8	-	30
II	8	8	8		4	2	30
111	4	8	6	4	8		30
Total marks per objective	16	24	24	4	20	2	90
% Weightage	18	27	27	4	22	2	100

S.Y. B. Sc. (STATISTICS) SEMESTER III

Core course - II COURSE TITLE: Sampling Techniques

		COURSE CODE:22US3STCC2SAT [CREDITS - O2]				
		Course Learning Outcome				
After	the suce	cessful completion of the Course, the learner will be able	to:			
1.	I. Explain the basic concepts & steps involved in conducting a sample survey.					
2.	 2. Distinguish between the different types of errors occurring in the survey 					
3.	Apply	different sampling techniques such as simple random	n sampling.			
	stratified random sampling, cluster sampling, systematic sampling, ratio &					
	reares	ion methods for conducting surveys				
1	Fstimat	te parameters using different sampling techniques				
-т. 5	Estimat	to sample size for different sampling techniques.				
). 6	Comp	the procision of different compling techniques.				
0.	Compa	the the precision of different sampling techniques.				
	1.1.1	Fundamentals of Comple Curries is and Circula Dandam	F1 41 7			
MOC	iule i	<u>Fundamentals of Sample Sulveys and Simple Random</u> Sampling	[I4L]			
Loarni	na Obi	octives				
Tho m	ng Obj Vodulo i	s intended				
1		Jain the different concepts used in sampling				
ı. 2	То ехр	lain the different concepts used in sampling.				
2.	To exp	nam now to conduct sampling surveys.	£			
3.		ke aware of the different statistical Organizations and its	runctions.			
4.	lo esti	mate expectation & variance in case of variables & attrib	outes.			
5.	lo est	imate the sample size.				
Learni	ng Out	come:				
After	the suce	cessful completion of the module, the learner will be able	e to:			
1.	Disting	uish between simple random sampling with and	d without			
	replace	ement.				
2.	Unders	stand the nature of work carried out in the different	t Statistical			
	Organi	sations.				
3.	Prepa	re a questionnaire for sampling & census survey.				
4.	Estim	ate the mean and variance of the population values.				
1	.1	Introduction to Design of Sample Surveys.	[6L]			
		Types of Data: Primary & Secondary Data				
		Methods for collection of data: Direct & Indirect				
	Method, Questionnaire, Scheduling, Interview, E-					
		survey (Google forms), Merits & Demerits.				

	Basic definitions: Population, Population unit, Sample,				
	Sample unit, Parameter, Statistic, Estimator, Bias,				
	Unbiasedness, Mean square error, Relationship				
	between MSE & Variance, Standard error.				
	Survey: Census survey, Sample Survey. Steps in				
	conducting a sample survey with examples on				
	designing appropriate Questionnaires.				
	Errors: Concepts of Sampling and Non-sampling errors.				
	Recognised Institutes: NSSO, CSO, IIPS and their				
	functions.				
	Types of Sampling: Probability and Non Probability				
	sampling.				
1.2	Simple Random Sampling: (SRS for variables).	[5L]			
	Definition: Sampling with & without replacement for				
	variables (WR/WOR).				
	Methods to select Simple random sample: Lottery				
	method & use of Random numbers to select Simple				
	Estimation: Population mean & total. Expectation &				
	Variance of the Estimators, Unbiased Estimator of				
	variance of these estimators. (WR/WOR).				
	Sample Size: Estimation of Sample size based on a				
	desired accuracy in case of SRS for variables				
	(WR/WOR).				
1.3	Simple Random Sampling: (SRS for attributes).	[3L]			
	Estimation of population proportion. Expectation &				
	Variance of the estimators, Unbiased estimator of				
	variance of these estimators. (WR/WOR).				
	Sample Size: Estimation of Sample size based on a				
	desired accuracy in case of SRS for attributes.				
	(WR/WOR).				
References:					
Sampli	ng Techniques: W.G. Cochran; 3rd Edition; Wiley (1978)				
Sampli	• Sampling Theory and methods: M.N. Murthy; Statistical Publishing Society.				
(1967)					
• Sampling Theory: Des Raj; McGraw Hill Series in Probability and Statistics.					

(1968).

Autonomous (Affiliated to University of Mumbai)

 Sampling Theory of Surveys with Applications: P.V. Sukhatme and B.V. Sukhatme; 3rd Edition; Iowa State University Press (1984). Fundamentals of Applied Statistics: S. C. Gupta and V.K. Kapoor; 3rd Edition; Sultan Chand And Sons (2001). Theory and Analysis of Sample Survey Designs: Daroga Singh, F.S.Chaudhary, Wiley Eastern Ltd. (1986). Sampling Theory and Methods: S. Sampath, Second Edition (2005), Narosa. Theory and Methods of Survey Sampling: Parimal Mukhopadhyay, (1998), Prentice Hall of India Pvt. Ltd. 				
Module 2	Stratified Random Sampling, Cluster sampling, Two-	[12L]		
Learning Obj	ectives:			
The module i	s intended			
1. To ex	plain the difference between Stratified & Cluster Sar	mpling and		
situatio	ons where such methods will be suitable.			
Learning Out	come:			
After the suc	cessful completion of the module, the learner will be able	e to:		
1. Disting	uish between Stratified & Cluster Sampling			
2. Estima	te the sample size in case of proportional & optimum allo	ocation.		
3. Find e	efficiency of Stratified & Cluster Sampling over Simp	le Random		
Sampii 21	Ily.	[0] 1		
2.1	Stratilied Random Sampling.	[91]		
	Concept: Need for stratification of population with			
	Advantages of stratified Compling			
	Auvantages of straumed sampling.			
	Estimation: Population mean & total in case of			
	Stratified Random Sampling, Variance of the Unbiased			
	Estimators, Unbiased Estimators of variances of these			
	estimators.			
	Allocation: Proportional allocation, Optimum			
allocation with and without varying costs.				
	Efficiency: Comparison of Simple Random Sampling,			
	strautied Random Sampling Using Proportional			
	allocation & Neyman allocation.			

Sometyer TRUST

2.2	Cluster Sampling.	[2L]
	Estimation: Population Mean & total, Expectation of	
	the estimators in Cluster Sampling with equal cluster	
	sizes.	
2.3	Two-Stage Sampling & Multi-Stage Sampling	[1L]
	Concept only. Difference between stratification &	
	multi-stage sampling.	
References:		
 Sampli 	ng Techniques: W.G. Cochran; 3rd Edition; Wiley (1978)	
 Sampli (1967) 	ng Theory and methods: M.N. Murthy; Statistical Publish	ing Society.
• Sampl	ing Theory: Des Rai: McCraw Hill Series in Probability and	d Statistics
(1968)	ing Theory. Des haj, meendwithin series in Trobability and	a statistics.
 Sampl Sukhat 	ing Theory of Surveys with Applications: P.V. Sukhatme a me; 3rd Edition; Iowa State University Press (1984).	nd B.V.
Funda Edition	mentals of Applied Statistics: S. C. Gupta and V.K. Kapoo	r; 3rd
Theory	and Analysis of Sample Survey Designs: Daroga Singh	
F S Cha	udhary Wiley Fastern Itd. (1986)	
 Sampli 	ng Theory and Methods: S. Sampath. Second Edition (20	05).
Narosa	n. 1.	•)/,
Theory	, and Methods of Survey Sampling: Parimal Mukhopadhy	vav. (1998).
Prentic	ce Hall of India Pvt. Ltd.	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Module 3	Ratio. Regression and Systematic sampling	[IOL]
Learning Obi	ectives:	
The module i	s intended	
1. To hel	p improve the estimates using methods of Ratio & Regre	ssion.
2. To obt	ain a sample using systematic sampling.	
Learning Out	come:	
After the suce	cessful completion of the module. the learner will be able	e to:
1. To est	imate the population parameters with increased precisio	on.
2. To ap	ply systematic sampling in suitable situations.	
3. Comp	are the different sampling techniques.	
3.1	Ratio Estimation assuming SRSWOR.	[3L]
	Concept & Estimation: Ratio Estimators for population	~ -
	Ratio. Mean & Total. Expectation & MSE of the	
	Estimators. Estimators of MSE. Uses of Ratio Estimator.	

3.2	Regression Estimation assuming SRSWOR	[4L]		
	Concept & Estimation: Regression Estimators for			
	population Mean & Total. Expectation & Variance of			
	the Estimators assuming known value of regression			
	coefficient 'b'. Estimation of 'b'. Resulting variance of			
	the estimators. Uses of regression Estimator.			
	Efficiency: Comparison of Ratio, Regression & mean			
	per Unit estimators.			
3.3	Systematic Sampling.	[3L]		
	Systematic Sampling Procedure. Notations and			
	Terminology. Variance of the estimated mean.			
	Comparison of SRS & Stratified Sampling with			
	Systematic Sampling. Introduction to Circular			
	Systematic Sampling.			
References:				
 Sampli 	ng Techniques: W.G. Cochran; 3rd Edition; Wiley (1978)			
• Sampling Theory and methods: M.N. Murthy; Statistical Publishing Society.				
(1967)				
Sampl	ing Theory: Des Raj; McGraw Hill Series in Probability and	d Statistics.		
(1968).				
Sampl	ing Theory of Surveys with Applications: P.V. Sukhatme a	nd B.V.		
Sukhat	me; 3rd Edition; Iowa State University Press (1984).	2		
Funda	mentals of Applied Statistics: S. C. Gupta and V.K. Kapoo	r; 3rd		
Edition	i; suitan Chand And Sons (2001).			
• Theory	and Analysis of Sample Survey Designs: Daroga Singn,			
F.S.Cha	ng Theory and Mathada & Sampath Second Edition (20	(-5)		
 Sample Narosa 	ng meory and Methous: 5. sampath, second Edition (20 1.	()),		
Theory	/ and Methods of Survey Sampling: Parimal Mukhopadhy	vay, (1998),		
Prentic	e Hall of India Pvt. Ltd.			

Question Paper Template S.Y. B. Sc. (STATISTICS) SEMESTER III Core Course- II COURSE TITLE:Sampling Techniques COURSE CODE:22US3STCC2SAT [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	14	10	6	-	-	-	30
II	12	14	2	-	2	-	30
111	10	12	2	4	-	2	30
Total marks per objective	36	36	10	4	2	2	90
% Weightage	40	40	11	4	2	2	100

_]

S.Y. B. Sc. (STATISTICS) SEMESTER III Core course - III COURSE TITLE: Operations Research-I COURSE CODE: 22US3STCC3OPRI [CREDITS - O2]

Course Learning Outcomes

After the successful completion of the Course, the learner will be able to:

- 1. Construct a mathematical model of real-world problems.
- 2. Explain basic concepts in LPP.
- 3. Solve LPP using graphical, simplex and Big M methods.
- 4. Construct dual and obtain a solution to primal / dual by solving the other.
- 5. Explain basic concepts in Transportation and Assignment Problem.
- 6. Identify optimum solution to Transportation and Assignment Problem.
- 7. Establish the optimum sequence for a series of jobs.
- 8. Solve two person zero sum game.
 - 9. Simplify games of higher dimensions by reducing it to 2 X 2 matrix.

Module 1	Linear programming problem	[14

Learning Objectives:

The module is intended to

- 1. Understand LPP
- 2. Formulate LPP mathematically.
- 3. Find optimum solution to LPP

Learning Outcomes:

After the successful completion of the module, the learner will be able to:

- 1. Construct a mathematical model of real-world problems.
- 2. Explain basic concepts in LPP.
- 3. Solve LPP using graphical, simplex and Big M methods.
- 4. Construct dual and obtain a solution to primal / dual.

1.1	Linear Programming Problem : Definition of LPP, Mathematical Formulation of LPP, Concepts of Solution, Feasible Solution, Basic Feasible Solution, Degenerate solution, Non-degenerate solution, Optimal solution, slack variable, Standard form of LPP	[4L]
1.2	Graphical Solution for problems with two variables, Simplex method of solving problems with two or more variables. Big M method.	[/L] [3L]
1.3	Concept of Duality, Its use in solving L.P.P. Relationship between optimum solutions to Primal and Dual. Economic interpretation of Dual.	
	 References : Operations Research: Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons. (1980) Mathematical Models in Operations Research: J K Sharma, Tata McGraw Hill Publishing Company Ltd.(1989) Operations Research: S.D.Sharma.IIth edition, KedarNath Ram Nath& Company.(2001) Operations Research: H. A.Taha.6th edition, Prentice Hall of India.8th edition (2008) Quantitative Techniques for Managerial Decisions: J.K.Sharma, (2001), MacMillan India Itd. 	
Module 2	Transportation and Assignment Problem	[I4L]
Learning Ot The module 1. Unde 2. Math 3. Meth	pjectives: e is intended to erstand problems in Transportation and Assignment. nematical formulation TP and AP nods of finding optimum solution to TP and AP	

Learning Outcomes:

After the successful completion of the module, the learner will be able to:

- 1. Explain Transportation and Assignment Problem.
- 2. Identify optimum solution to Transportation and Assignment Problem.

Transportation Problem: Concept, Mathematical Formulation, Concepts of Solution, Feasible Solution, Balanced and Unbalanced Transportation Problem.	[4L]
Initial Basic Feasible Solution by North-West Corner Rule, Matrix Minima Method, Vogel's Approximation Method. Optimal Solution by MODI Method Problems involving unique solution, multiple solutions, degeneracy, maximization, prohibited route(s)	[4L]
Assignment Problem: Concept, Mathematical Formulation Balanced and unbalanced problem, relation with T.P. Solution by: Complete Enumeration Method and Hungarian method. Maximization type Assignment problems. Problems involving Prohibited routes. Travelling Salesman Problem.	[6L]
 References: Operations Research: Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons. (198O) Mathematical Models in Operations Research: J K Sharma, Tata McGraw Hill Publishing Company Ltd.(1989) Operations Research: S.D.Sharma.IIth edition, KedarNath Ram Nath& Company.(2001) Operations Research: H. A.Taha.6th edition, Prentice Hall of India.8th edition (2008) Quantitative Techniques for Managerial Decisions: J.K.Sharma, (2001), MacMillan India Itd. 	
	 Transportation Problem: Concept, Mathematical Formulation, Concepts of Solution, Feasible Solution, Balanced and Unbalanced Transportation Problem. Initial Basic Feasible Solution by North-West Corner Rule, Matrix Minima Method, Vogel's Approximation Method. Optimal Solution by MODI Method Problems involving unique solution, multiple solutions, degeneracy, maximization, prohibited route(s) Assignment Problem: Concept, Mathematical Formulation Balanced and unbalanced problem, relation with T.P. Solution by: Complete Enumeration Method and Hungarian method. Maximization type Assignment problems. Problems involving Prohibited routes. Travelling Salesman Problem. References: Operations Research: Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons. (1980) Mathematical Models in Operations Research: J K Sharma, Tata McGraw Hill Publishing Company Ltd.(1989) Operations Research: S.D.Sharma.IIth edition, KedarNath Ram Nath& Company.(2001) Operations Research: H. A.Taha.6th edition, Prentice Hall of India.8th edition (2008) Quantitative Techniques for Managerial Decisions: J.K.Sharma, (2001), MacMillan India Itd.

Autonomous (Affiliated to University of Mumbai)

Module 3	Sequencing Problem and Game Theory	[8L]				
Learning Ot The module 1. Ur 2. So	Learning Objectives: The module is intended to 1. Understand sequencing problem and find solution for the same. 2. Solve two person zero sum game.					
Learning Ou After the su 1. Estab 2. Solve 3. S	itcomes: ccessful completion of the module, the learner will be able lish the optimum sequence for a series of jobs. two person zero sum game. implify games of higher dimensions by reducing it to 2 X 2	to: matrix.				
3.1	Sequencing Problem: Introduction, Assumptions, Johnsons algorithm for processing n Jobs through 2 and 3 Machines, Examples.	[3L]				
3.2	Game Theory : Definitions of two persons Zero Sum Game , Saddle point, value of the game, Pure and Mixed strategy, Optimal solution of two person zero sum games, Dominance property, Derivation of formulae for (2X2) game. Graphical solution of (2Xn) and (mX2) games, Reduction of game theory to LPP.	[5L]				
• O S • • • • • • • • • • • • • • • • • • •	References: perations Research: Kantiswaroop and Manmohan Gupta. 4 Chand & Sons. (1980) Mathematical Models in Operations Research: J K Sha lcGraw Hill Publishing Company Ltd.(1989) Operations Research: S.D.Sharma.11th edition, KedarNath Ra ompany.(2001) Operations Research: H. A.Taha.6th edition, Prentice Hall c dition (2008) Quantitative Techniques for Managerial Decisions: J.K.Sharm MacMillan India Itd.	th Edition; rma, Tata am Nath& of India.8 th na, (2001),				

Question Paper Template S.Y. B. Sc. (STATISTICS) SEMESTER III Core Course- III COURSE TITLE: COURSE CODE: [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I							30
II							30
111							30
Total marks per objective							90
% Weightage							100

S.Y. B. Sc. (STATISTICS) SEMESTER IV

Core course - I

COURSE TITLE: Probability and Sampling Distributions

COURSE CODE: 22US4STCCIPSD [CREDITS - O2]

Course Learning Outcome After the successful completion of the Course, the learner will be able to: 1. Derive statistical measures of various continuous probability distributions. 2. Apply the Central Limit Theorem. 3. Identify and derive the relationships between various probability distributions. 4. Apply appropriate test based on chi-square, t and F probability distributions. 5. Construct confidence intervals for the population parameters. Rectangular, Normal, Beta Distribution Type(I, II) [12L] Module 1 Learning Objectives: This module is intended to To know the most widely used continuous probability distributions such as 1. rectangular, normal, beta type I and II, gamma 2. Recognize the importance of the central limit theorem and understand when it is appropriate to use normal approximations for the distribution of a statistic Learning Outcome: After the successful completion of the module, the learner will be able to 1. A student will be able to understand the relationship between various transformations of the random variables following normal, beta type I and II, gamma 2. A student will be able to apply Central Limit Theorem to the suitable situation 1.1 **Rectangular Distribution** [1L] Definition, MGF, mean, variance 1.2 Normal Distribution [6L]

Definition, MGF, CGF, Mean, Median, Mode, Standard deviation, MGF, CGF, Moments & Cumulants (up to fourth order), odd and even ordered central moments, skewness & kurtosis, Mean absolute deviation,

	distribution of linear function of independent Normal variables. Fitting of Normal Distribution.	
1.3	Central Limit Theorem for i.i.d. random variables with proof	[IL]
1.4	Beta Distribution of Type I	[1L]
	Definition, raw moments, mean, variance, mode	
1.5	Beta Distribution of Type II	[3L]
	Definition, raw moments, mean, variance, mode, inter- relations between beta type I and type II distributions.	
 Introd Boyes, Introd Edition John E Pearso Introd Wiley Funda Edition Mathe & Con An Ou DasGu Statist ;Nirali Statist Publish 	uction to the theory of statistics: A. M. Mood, F.A. Grayb Third Edition; McGraw-Hill Book Company. Juction to Mathematical Statistics: R.V.Hogg, A.T. Craig; Fe n; Collier McMillan Publishers. . Freund's Mathematical Statistics: I. Miller, M. Miller; Sixt on Education Inc. Juction to Mathematical Statistics: P.G. Hoel; Fourth Editic & Sons Inc. mentals of Mathematical Statistics: S.C. Gupta, V.K. Kapoo n; Sultan Chand & Sons. ematical Statistics: J.N. Kapur, H.C. Saxena; Fifteenth Editio npany Ltd. Jupta; Third Edition; TheWorldPress Pvt. Ltd. ical Methods Using R Software :V. R. Pawagi and Saroj A. Publications. ics Using R. S. G. Purohit, S. D. Gore, and S. R. Deshmukh. N hing House. Exponential, Gamma, Chi-square Distribution	ill, D. C. ourth h Edition; on; John or; Eighth n; S. Chand B. Ranade Narosa
This module	is intended to	
1. To le distrib	arn the various forms of the exponential, Gamma and utions	chi-square
2. To lea	rn various applications of chi square distribution	

 After the successful completion of the module, the learner will be able to 1. A student will be able to relate the exponential, Gamma and chi square distribution by changing the parameters appropriately 2. A student will be able to apply chi square test. 				
2. A stud 2.1	Exponential Distribution	[2L]		
	Definition, moments, MGF, CGF, mean, mode, variance, skewness and kurtosis, Median, Quartiles, Deciles, Percentiles memory less property			
2.2	Gamma Distribution (with Single & Double parameter)	[4L]		
	Definition, raw moments, mean, variance, mode, MGF, CGF, skewness and kurtosis, Distribution of X+Y, X/Y, X/ $(X + Y)$			
2.3	Chi-Square Distribution	[3L]		
	Definition, Concept of degrees of freedom. Mean, Median, Mode, variance, MGF, CGF, additive property, Sampling distributions of sample mean and sample variance and their independence for a sample drawn from Normal distribution, distribution of U / V, U / (U+V) where U and Y are independent chi square variates.			
2.4	Applications of Chi-Square	[3L]		
	Confidence interval for the variance of a Normal population, Test of significance for specified value of variance of a Normal population. Test for goodness of fit, Test for independence of attributes.			
References:				
 Introdu Boyes, Introdu Edition John E. Pearso 	uction to the theory of statistics: A. M. Mood, F.A. Grayb Third Edition; McGraw-Hill Book Company. uction to Mathematical Statistics: R.V.Hogg, A.T. Craig; Fo a; Collier McMillan Publishers. Freund's Mathematical Statistics: I. Miller, M. Miller; Sixt n Education Inc.	ill, D. C. ourth h Edition;		

 Introduction Fundarie Fundarie Edition Matherie Com An Ourie DasGu Statistii Statistii Publishii 	uction to Mathematical Statistics: P.G. Hoel; Fourth Editio & Sons Inc. mentals of Mathematical Statistics: S.C. Gupta, V.K. Kapoon; Sultan Chand & Sons. ematical Statistics: J.N. Kapur, H.C. Saxena; Fifteenth Edition opany Ltd. tline of Statistical Theory Vol. I: A.M. Goon, M.K. Gupta, pta; Third Edition; TheWorldPress Pvt. Ltd. cal Methods Using R Software :V. R. Pawagi and Saroj A. Publications. cs Using R. S. G. Purohit, S. D. Gore, and S. R. Deshmukh. N ing House.	on; John or; Eighth n; S. Chand B. Ranade Narosa
Module 3	t-distribution and F distribution	[12L]
Learning Object The module in 1. To lea 2. To lea	ectives: is intended to arn probability distribution of t and F variate arn various applications of t and F distributions	
Learning Out	come:	
After the suce 1. A stuc the pre	cessful completion of the module, the learner will be able dent will be able to apply t and F distributions as per the oblem	e to demand of
3.1	t-Distribution	[3L]
	Definition, derivation, Mean, Median, Mode, variance, MGF, CGF, odd and even ordered central moments, asymptotic properties, Student's t	
3.2	Applications of t	[3L]
	Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance, test of significance of: mean of a Normal population, difference in means of two Normal populations based on independent sample s with equal variances.	
3.3	F-Distribution	[4L]
	Definition, derivation of the distribution, MGF, CGF, Mean, Mode, variance. Distribution of: Reciprocal of an	

	F variate. Interrelationship of F with: t-distribution, Chi- square distribution & Normal distribution			
3.4	Applications of F	[2L]		
	Confidence interval for ratio of variances of two independent Normal populations, Test for equality of variances of two independent Normal populations			
References:				
Introd	uction to the theory of statistics: A. M. Mood, F.A. Grayb	ill, D. C.		
BOYES,	Third Edition; McGraw-Hill Book Company.	o untle		
• Introd	ucuon to Mathematical statistics: K.V.Hogg, A.T. Claig; F	Jurth		
Luitioi	Edition; Collier McMillan Publishers.			
• John E. Pearso	John E. Freund's Mathematical Statistics: I. Miller, M. Miller; Sixth Edition; Dearson Education Inc.			
 Introduction to Mathematical Statistics: P.C. Hoel: Fourth Edition: John 				
Wiley & Sons Inc				
• Fundar	nentals of Mathematical Statistics: S.C. Gupta, V.K. Kapoo	or; Eighth		
Editior	Edition; Sultan Chand & Sons.			
 Mathe 	Mathematical Statistics: J.N. Kapur, H.C. Saxena; Fifteenth Edition: S. Chand			
& Con	ipany Ltd.			
 An Out 	An Outline of Statistical Theory Vol. 1: A.M. Goon, M.K. Gupta, B.			
DasGupta; Third Edition; TheWorldPress Pvt. Ltd.				
 Statisti ;Nirali 	 Statistical Methods Using R Software :V. R. Pawagi and Saroj A. Ranade ;Nirali Publications. 			
• Statisti	cs Using R. S. G. Purohit, S. D. Gore, and S. R. Deshmukh. N	Narosa		
Publish	ing House.			

Question Paper Template S.Y. B. Sc. (STATISTICS) SEMESTER IV Core Course- I COURSE TITLE: Probability and Sampling Distributions COURSE CODE: 22US4STCCIPSD [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	6	8	4	4	8	-	30
II	6	6	12	2	4	-	30
111	4	4	12	4	6	-	30
Total marks per objective	16	18	28	Ю	18	-	90
% Weightage	18	20	31	11	20	-	100

S.Y. B. Sc. (STATISTICS) SEMESTER IV

Core course - II

COURSE TITLE: Design of Experiments-I

COURSE CODE: 22US4STCC2DOE1 [CREDITS - O2]				
Course Learning Outcome				
After the successful completion of the Course, the learner will be able to:				
1. Formulate the appropriate model in case of one-way, two-way and three- way classification.				
2. List the assumptions and hypotheses to be tested for the given model.				
3. Estimate the parameters of the model and the various sums of squares.				
4. Find the expectation of various sums of squares and the variance of the estimators.				
5. Analyse the significance of the different effects due to rows, columns or treatments.				
6. Explain & distinguish between the concepts used in designs of experiments.				
7. Identify the design & explain the principles used.				
8. Compare the efficiency of one design over another.				
9. Estimate the missing value and analyse the design.				
Module 1 Introduction to ANOVA-One way and Two way [12L]				
classification				
earning Objectives:				
The module is intended				
1. To discuss the concept of fixed effect model with respect to one-way and				
two-way classification.				
earning Outcome:				
After the successful completion of the module, the learner will be able to				

After the successful completion of the module, the learner will be able to

- 1. Distinguish between fixed effect & random effect model.
- 2. Analyse the significance of the factors in case of one-way & two-way classification.
- 3. Estimate the parameters, various sum of squares, expectation of various sum of squares & variance of the estimators.

1.1	Introduction to Analysis of Variance	[2L]
	Introduction: Use of analysis of variance, Cochran's	
	Theorem. Fixed effect, Random effect model and	
	mixed effect model.	

Somanya. TRUST

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

1.2	Analysis of variance One-way classification (Fixed	[5L]
	Effect Model).	
	Concept: One way classification with equal &	
	unequal observations per class, Mathematical	
	Model, Assumptions, Hypothesis to be tested.	
	Estimation: Least square estimators of the parameters,	
	Various Sum of Squares,	
	Expectation of various sums of squares, Variance of	
	the estimators	
	Construction of ANOVA table.	
	Post Analysis: Concept of Contrast, S.E., Critical	
	Difference & C.I.	
1.3	Analysis of variance Two-way classification (Fixed	[5L]
	Effect Model).	
	Concept: Two-way classification with one observation	
	per cell. Mathematical Model, Assumptions,	
	Hypothesis to be tested.	
	Estimation: Least square estimators of the parameters,	
	Various Sum of Squares,	
	Expectation of various sums of squares,	
	Variance of the Estimators Analysis: F-	
	test, Analysis of variance table.	
	Post Analysis: Critical Difference.	
References:		I
• Expe	rimental Designs: W.G. Cochran and G.M.Cox; Second Edi	tion;John
Wiley	and Sons.	
• The	Design and Analysis of Experiments: Oscar Kempthorne, Jo	hn Wiley
and S	ons.	
 Desig 	n and Analysis of Experiments: Douglas C Montgomery; 6	th Edition;
John '	Wiley & Sons.	
• Desig	jn and Analysis of Experiments: M.N.Das and N.C.Giri, 2nd	Edition;
New <i>J</i>	Age International (P) Limited;1986.	
• Expe	rimental Design, Theory and Application: Walter T Federe	er; Oxford
& IBH	l Publishing Co. Pvt. Ltd.	
• Fund Sultar	amentals of Applied Statistics: S.C.Gupta and V.K.Kapoor; Chand and Sons (2001)	3rd Edition;
 Static 	tical Principlos in Experimental Design, B1 Winer, McCraw	, Hill Book

• Statistical Principles in Experimental Design: B.J. Winer, McGraw Hill Book Company.

Autonomous (Affiliated to University of Mumbai)

Module 2	Introduction to designs of experiment, CRD, RBD,	[12L]
	BIBD	
Learning Obj	ectives:	
The module i	is intended	
1.	To explain the various concepts & principles in experimen	ntal designs.
Learning Out	come:	
After the suc	cessful completion of the module, the learner will be able	e to
1. Unders	stand the terminologies used in the designs of experimer	nts.
2. Apply	the different designs in suitable situations.	
3. Estima	te the missing values.	
4. Compa	are the efficiency of one design over other.	
2.1	Introduction to Design of Experiments.	[3L]
	Concepts: Experiments, Experimental unit, Treatment,	
	Yield, Block, Replicate, Experimental Error, Precision.	
	Principles of Design of Experiments: Replication,	
	Randomization & Local Control. Choice of size, shape	
	of plots & blocks in agricultural & non-agricultural	
	experiments.	
	Efficiency of design DI with respect to design D2.	
2.2	Completely Randomized Design (CRD)	[3L]
	Concept of C.R.D.: Mathematical Model, Assumptions,	
	Hypothesis to be tested.	
	Estimation: Least square estimators of the	
	parameters, Expectation of various sums of squares,	
	Variance of the estimators	
	Analysis :F-test, Analysis of variance table.	
2.3	Randomized Block Design (RBD).	[3L]
	Concept of R.B.D.: Mathematical Model, Assumptions,	
	Hypothesis to be tested.	
	Estimation: Least square estimators of the	
	parameters, Expectation of various sums of squares,	
	Variance of the estimators Analysis: F-test, Analysis of	
	variance table.	
	Efficiency: RBD relative to a CRD.	
	Missing plot technique: One missing observation in	
	case of RBD.	

2.4	Balanced Incomplete Block Design (BIBD).	[3L]			
	Concept: Parameters of BIBD, Incidence				
	Matrix, Parametric relations Symmetry:				
	Necessary & Sufficient Condition, Theorem.				
	Resolvable BIBD & Affine Resolvable BIBD.				
References:					
• Exper	imental Designs: W.G. Cochran and G.M.Cox; Second Edi	tion;John			
Wiley	and Sons.				
• The D	esign and Analysis of Experiments: Oscar Kempthorne, Jo	hn Wiley			
and Sc	ns.				
 Design 	and Analysis of Experiments: Douglas C Montgomery; 6	th Edition;			
John V	/iley & Sons.				
Design	n and Analysis of Experiments: M.N.Das and N.C.Giri, 2nd	Edition;			
New A	imental Design Theory and Application, Walter T Federe	r. Oxford			
	Publiching Co. But 1td				
€ Eunda	mentals of Applied Statistics: SC Cupta and VK Kapoor.	3rd Edition			
Sultan	Chand and Sons (2001)	JIU LUIUOII,			
Statisti	cal Principles in Experimental Design, B.I. Winer, McCraw	Hill Book			
Comp	anv				
Compo	any.				
Module 3	LSD & Factorial experiments	[12L]			
Learning Obj	ectives:				
The module i	s intended				
I. To exp	olore the general theory of factorial designs and its applic	cations.			
Learning Out	come:				
After the suc	cessful completion of the module, the learner will be able	e to			
	I ,				
1. Differe	ntiate between block designs & factorial designs.				
2. Estimate the parameters in case of multiway classification.					
3. Calculate the various treatment effects.					
3.1	Latin Square Design (LSD).	[6L]			
	Concept of C.R.D.: Mathematical Model, Assumptions,	_			
	Hypothesis to be tested.				
	Estimation: Least square estimators of the parameters,				
	Expectation of various sums of squares, Variance of the				
1					

Analysis: F-test, Analysis of variance table.

	Efficiency: Efficiency of the design relative to RBD, CRD.				
	Missing plot technique: One missing observation in				
	case of LSD.				
3.2	Factorial Experiments.	[6L]			
	Concept: Definition, Purpose & Advantages.				
	2 ^k Experiments: 2 ² , 2 ³ Experiments. Calculation of Main				
	& interaction Effects. Yates' method.				
	Analysis: Analysis of 2 ² & 2 ³ factorial experiments in RBD				
	& LSD.				
References:					
 Experi 	mental Designs: W.G. Cochran and G.M.Cox; Second Edi	tion;John			
Wiley a	and Sons.				
• The D	esign and Analysis of Experiments: Oscar Kempthorne, Jo	hn Wiley			
and So	ns.				
 Design 	and Analysis of Experiments: Douglas C Montgomery; 61	th Edition;			
John W	/iley & Sons.				
 Design 	n and Analysis of Experiments: M.N.Das and N.C.Giri, 2nd	Edition;			
New A	ge International (P) Limited;1986.				
 Experi 	mental Design, Theory and Application: Walter T Federe	er; Oxford			
& IBH	Publishing Co. Pvt. Ltd.				
• Funda	mentals of Applied Statistics: S.C.Gupta and V.K.Kapoor;	3rd Edition;			
Sultan	Sultan Chand and Sons (2001).				
• Statisti	cal Principles in Experimental Design: B.J. Winer, McGraw	' Hill Book			
Compa	any.				
·	,				

Question Paper Template S.Y. B. Sc. (STATISTICS) SEMESTER IV Core Course- II COURSE TITLE:Design of Experiments-I COURSE CODE:22US4STCC2DOEI [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	10	12	8	-	-	-	30
II	12	12	2	2	2	-	30
111	8	8	8	-	2	2	30
Total marks per objective	30	32	18	2	4	2	90
% Weightage	33	36	20	2	4	2	100

S.Y. B. Sc. (STATISTICS) SEMESTER IV

Core course - III

COURSE TITLE: Project Management and Industrial Statistics COURSE CODE: 22US4STCC3PRM [CREDITS - O2]

Course Learning Outcomes

After the successful completion of the Course, the learner will be able to:

I. Construct simple network diagrams and apply the techniques of PERT, CPM in

Project Management.

- 1. Determine the critical path and the project completion time.
- 2. Carry out updating in the project networks.
- 3. Apply the concept of crashing of activities and solve simple problems.
- 4. Apply the seven process control tools to investigate drift.
- 5. Construct control charts for variables and attributes to determine if the process is in statistical control or not.
- 6. Explain concept of six sigma.
- 7. Evaluate efficiency of the process using process capability indices.
- 8. Explain the role of acceptance sampling in quality control.
- 10. Apply various acceptance sampling plans to accept or reject lots.

Module I	PERT and CPM	[14L]
Learning Ol	ojectives:	
The module	e is intended	
1. Unde	erstand the need of planning and scheduling, network a	analysis in
proje	ect management	
2. Cons	truct a network diagram.	
3. Analy	yze deterministic and nondeterministic networks using CPM	and PERT
techi	niques.	
4. Desc	ribe the Crashing of activities and solve simple problems.	

Learning Ou After the su 1. Const 2. Deve 3. Estin 4. Carr 5. Solv	itcomes: ccessful completion of the module, the learner will be able t truct network for the project elop abilities in project evaluation technique like CPM and P nate the duration of a project y out updating in project e problems involving costs.	to: ERT
1.1 1.2	Introduction, Basic concepts of network analysis Definitions: Activity, Event, Dummy activity, Predecessor and successor activities and events. Rules for drawing network, Fulkerson's Rule. Bar Diagram (Gantt Chart) and Network Diagram. Slack time and Float times. Critical path Method (CPM), Project evaluation review technique (PERT), Updating	[2L] [8L] [4L]
1.3	 Project cost analysis References: PERT and CPM, Principles and Applications: Srinath. 2nd edition, East-west press Pvt. Ltd. (1975) Operations Research: Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons. (1980) Mathematical Models in Operations Research : J K Sharma, (1989), Tata McGraw Hill Publishing Company Ltd. Operations Research: S.D.Sharma.11th edition, KedarNath Ram Nath& Company. (2001) 	
Module 2 Learning Ob The module	Statistical Process Control ojectives: is intended to	[12L]
1. Unde 2. Decic	rstand statistical process control. le whether process is in statistical control.	

Learning Outcomes:

After the successful completion of the module, the learner will be able to:

- 1. Apply the seven process control tools to investigate drift.
- 2. Construct control charts for variables and attributes.
- 3. Determine if the process is in statistical control or not.
- 4. Explain the concept of six sigma.
- 5. Evaluate efficiency of the process using process capability indices.

2.1	Introduction to SPC: Meaning and purpose of Statistical Process Control(SPC). Meaning of quality of a product and quality improvement, need of Process control. On line process control methods (control charts) and offline process control methods (Sampling schemes and plans) as lot control method	[IL]
2.2	Seven Process Control Tools: (i) Check Sheet (ii) Cause and effect diagram (CED) (iii) Pareto Diagram (iv) Histogram (v) Control Chart (vi) Scatter Diagram (vii) Design of Experiments (DOE).	[2L]
2.3	Control Charts : Chance causes and assignable causes of quality variation. Criteria for detecting lack of control situations. Construction and working of control charts. Control charts for variables : Construction and working Control charts for mean, control charts for range (R). Control charts for attributes : Construction and working of p charts for fixed and variable sample size. np, c and u control charts for fixed sample size.	[6L]
2.4	Choice between attributes and variable control charts Guidelines for implementing control charts	[1]
2.5	Process Capability Analysis using capability ratios: Use and interpretation C _p , C _{pk} , C _{pm} Confidence interval on process capability ratio C _p , C _{pk}	[1]

2.6	 Introduction to six sigma methodology. 	[1]
	 References: Operations Research: Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons. (1980) Mathematical Models in Operations Research : J K Sharma, (1989), Tata McGraw Hill Publishing Company Ltd. Operations Research: S.D.Sharma.IIth edition, KedarNath Ram Nath& Company. (2001) Introduction to Statistical Quality Control: D.C. Montgomery, 6th edition, John Willey and Sons (2009) Statistical Quality Control: E.L.Grant. 2nd edition, McGraw Hill, (2000) Quality Control and Industrial Statistics: Duncan. 3rd edition, D.Taraporewala sons & company. (1970) Quality Control: Theory and Applications: Bertrand L. Hansen, Prentice Hall of IndiaPvt. Ltd.(1973) 	
Module 3	Acceptance Sampling	[IOL]
Learning Ob The module 1. Unde 2. Apply	jectives: is intended rstand the sampling inspection plans. y Sampling Inspection Plans.	
Learning Ou After the suc 1. Expla 2. Apply	tcomes: ccessful completion of the module, the learner will be able in the role of acceptance sampling in quality control. acceptance sampling plans to accept or reject sampling lo	to: ts.

3.1	Introduction to Acceptance sampling plan for Attributes: Concept of sampling inspection plan, comparison between 100% inspection and sampling inspection. Lot formation. Explanation of the terms: Producer's risk. Consumer's risk, Acceptable Quality Level (AQL). Lot Tolerance Fraction Defective (LTFD), Average Outgoing Quality (AOQ), Average Outgoing Quality Limit (AOQL), Average Sample Number (ASN), Average Total Inspection (ATI), Operating characteristic (OC) curve, AOQ curve.	[3L]
3.2	Single Sampling Plan: Evaluation of probability of acceptance using (i) Hypergeometric (ii) Binomial (iii) Poisson distributions. Operating Characteristics (OC) curve. Derivation of AOQ and ATI. Graphical determination of AOQL, determination of a single sampling plan	[3L]
3.3	Double Sampling Plan : Evaluation of probability of acceptance. Operating Characteristics (OC) curve. Derivation of AOQ, ASN and ATI (with complete inspection of second sample). Comparison of single sampling plan and double sample plan.	[2L]
3.4	Introduction to Multiple sampling plan and sequential sampling plan.	[1L]

References:

- Operations Research: Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons. (1980)
- Mathematical Models in Operations Research : J K Sharma, (1989), Tata McGraw Hill Publishing Company Ltd.
- Operations Research: S.D.Sharma.IIth edition, KedarNath Ram Nath& Company. (2001)
- Introduction to Statistical Quality Control: D.C. Montgomery, 6th edition, John Willey and Sons (2009)
- Statistical Quality Control: E.L.Grant. 2nd edition, McGraw Hill, (2000)
- Quality Control and Industrial Statistics: Duncan. 3rd edition, D.Taraporewala sons & company. (1970)
- Quality Control: Theory and Applications: Bertrand L. Hansen, Prentice Hall of IndiaPvt. Ltd.(1973)

Question Paper Template S.Y. B. Sc. (STATISTICS) SEMESTER IV Core Course- III COURSE TITLE: Project Management and Industrial Statistics COURSE CODE: [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I							30
II							30
III							30
Total marks per objective							90
% Weightage							100