

Detailed B.Sc. Microbiology Syllabus

S. Y. B.Sc. Syllabus with effect from the Academic year 2022–2023

Syllabus - S. Y. B.Sc. Microbiology

Cour	Course Title	Syllabus Course Code	Credi ts	Hr	Perio ds	Mod ule	Lectu res			n
No.	Tiue				(5O min)		per module (50 minutes	Intern al Mar ks	Exter nal Mark s	Total Marks
SEME	STER III									
Core	courses TH	IEORY								
I	Medical Microbiol ogy	22US3MBCCIMD M	2	30	36	3	12	40	60	100
II	Genetics, Virology &Taxono my	22US3MBCC2GVT	2	30	36	3	12	40	60	100
III	Environme ntal Microbiol ogy	22US3MBCC3EVM	2	30	36	3	12	40	60	100
IV	Soil Microbiol ogy	22US3MBCC4SO M	2	30	36	3	12	40	60	100
Core courses PRACTICAL										
		1.22US3MBCCIP 2.22US3MBCC2P 3.22US3MBCC3P OR 22US3MBCC4P	3	90	108	-	-	40	60	100

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

SEN	MESTER IV									
Cor	e courses TH	IEORY								
I	Immunology	22US4MBCCI- IMM	2	3 0	36	3	12	40	60	100
II	Concepts in Biochemist ry	22US4MBCC2CBC	2	3 0	36	3	12	40	60	100
III	Industrial & Food Microbiolog Y	22US4MBCC3IFM	2	3 0	36	3	12	40	60	100
IV	Dairy Microbiolog y	22US4MBCC4DAM	2	3 O	36	3	12	40	60	100
Cor	Core courses PRACTICAL									
		1. 22US4MBCCIP 2. 22US4MBCC2P 3. 22US4MBCC3P OR 22US4MBCC4P	3	90	108	-	-	40	60	100

S.Y. B. Sc. (MICROBIOLOGY) SEMESTER III

Core course - I

COURSE TITLE: Medical Microbiology

COURSE CODE: 22US3MBCCIMDM [CREDITS - O2]

Course Learning Outcomes

After the successful completion of the three courses, the learner should be able to:

- 1. Explain and analyse the concept of host microorganism interaction.
- 2. Describe the pathogenicity of microorganisms.
- Demonstrate a basic understanding of epidemiologic methods and study design.

Module I	Host-Microorganism Interaction	[12L]
Learning Obj	ectives:	
This module	is intended to :	
1. Explor	e the host-microorganism interactions.	
2. Descri	be the entry, invasion and dissemination of microorgar	nisms in the
humar	n host.	
3. Acquir	re the knowledge of genetics of virulence.	
Learning Out	comes:	
	cessful completion of the module, the learner will be able the significance of host microbes interaction.	e to
2. Discuss	s the factors contributing to specific and nonspecific h	ost defense
system	ns.	
3. Descri	be the colonization process by microorganisms.	
1.1	The encounter between host and microorganism:	O2

1.1.1) The human host's Perspective-

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

	a) Microbial reservoirs and transmission	
	b) Human as Microbial Reservoirs	
	c) Animals as Microbial Reservoirs	
	d) Birds as Microbial Reservoirs	
	e) Insect as vectors	
	f) The environment as Microbial Reservoir	
	1.1.2) The Microorganism's perspective	
1.2	Microorganism colonization of host surfaces:	03
	1.2.1) The host's Perspective-	
	a) Skin and Skin structures	
	b) Mucous membranes- general and specific	
	protective characteristics	
	1.2.2) The Microorganism's perspective	
	a) Microbial colonization	
1.3	Microorganism entry, invasion and dissemination:	05
	1.3.1) The host's Perspective-	
	a) Disruption of surface barriers	
	b) Response to microbial invasion of deeper	
	tissues	
	c) Nonspecific responses- phagocytes and	
	inflammation	
	d) Specific responses- The immune system	
	e) Components of Immune system	
	f) Two arms of the immune system : Antibody	
	mediated immunity and cell mediated	
	immunity	
	1.3.2) The Microorganism's perspective :	
	a) Colonization and infection	

	b) Pathogen and virulence	
	c) Microbial Virulence factors	
1.4	Genetics of virulence : Pathogenicity islands	01
1.5	Outcome and prevention of infectious diseases :	01
	a) acute infection	
	b) chronic infection	
	c) Immunization	

- Bailey & Scott's Diagnostic Microbiology, 12th Edition, Elsevier International edition.
- Prescott, Harley and Klein. (2008). Microbiology. 7th edition McGraw Hill international edition.
- Sherris Medical Microbiology-An introduction to infectious diseases-Kenneth.J.Ryan/ C.George Ray-4th edition
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC652I974/

Module 2	Pathogenicity of microorganism	[12L]

Learning Objectives:

This module is intended to

- 1. Explain the outcome of the host parasite relationship.
- 2. Identify the type of infectious process.
- 3. Perceive the overview of bacterial pathogenicity and virulence.

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Explain various factors associated with host parasite relationship.
- 2. Comprehend the mechanism of infections.

3. Differe	entiate between exotoxins and endotoxins.	
2.1	Host parasite relationship :	03
	a) Introduction to virulence b) Outcome of host	
	parasite relationship c) Mathematical expression of	
	infection d) Various types of infection e) Concept of	
	LD5O and ID5O f) Determination of LD5O and ID5O	
2.2	Overview of bacterial pathogenesis	02
2.3	Bacterial adherence factors - Fimbriae, glycocalyx,	02
	pili, S-layer, slime layer, teichoic and lipoteichoic acid	
2.4	Virulence factors: Enzymes: hyaluronidase,	02
	collagenase, streptokinase, coagulase, hemolysin,	
	siderophores	
2.5	Toxigenicity : Chief characteristics of	03
	a. Exotoxins and Endotoxin	
	b.Neurotoxin, Enterotoxin, Cytotoxin	

- Prescott, Harley and Klein. (2008). Microbiology. 7th edition McGraw Hill international edition.
- Bailey & Scott's Diagnostic Microbiology, 12th Edition, Elsevier International edition.
- Khan Fahim Halim, The elements of Immunology, 1st edition ,Published by Pearson Education (2009)

Module 3	Epidemiology	[12L]
Learning Obje	ectives:	
The module i	s intended to:	
1) Measure th	e frequency of a disease.	
2) Evaluate th	ne course of an infectious disease.	

Learning Outcome:

By the end of this course students will be able to:

- 1) Classify the disease based on its frequency.
- 2) Calculate morbidity and mortality rate of an infection.
- 3) Suggest measures to control the spread of a disease.

3.1	Epidemiology of infectious disease : include a	01
	case study in practical	
3.2	Epidemiology terminology.	01
3.3	Measuring frequency- The epidemiologist's tools:	O2
	Mortality rate and Morbidity rate	
3.4	Infectious disease cycle	O2
3.5	Recognition of a infectious disease in a population in	01
	an epidemic	
3.6	Virulence and mode of transmission	01
3.7	Emerging and re-emerging infectious diseases and	01
	pathogens	
3.8	Control of epidemics	01
3.9	Nosocomial infections	01
3.10	Global travel and health considerations	01

References:

- Prescott, Harley and Klein. (2008). Microbiology. 7th edition McGraw Hill international edition.
- Bailey & Scott's Diagnostic Microbiology, 12th Edition, Elsevier International edition.
- Frobisher, M. (1974) Fundamentals of Microbiology.9th Edition. W.B. Saunders Company

S.Y.B.S.c (Microbiology)

Semester III - Practicals

Course 1

Course Code: 22US3MBCCIP

Credits: O1

Sr.No	Experiments	No of Hours
	 Study of virulence factor (enzymes): Coagulase, Haemolysin, Lecithinase. 	10
	2) Study of Normal flora from human skin, Throat	10
	and stool sample	05
	3) Study of Phagocytosis demonstration	
	Assignments:	05
	Epidemiology case studies	

Question Paper Template

S.Y. B. Sc. (Microbiology) SEMESTER III

Core Course- I

COURSE TITLE: Medical Microbiology

COURSE CODE: 22US3MBCCIMDM [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	15	10	05	ı	ı	ı	30
II	10	10	05	05	ı	ı	30
III	10	10	O5	O5	-	-	30
Total marks per objective	35	30	15	10			90
% Weightage	39%	33%	17%	11%	-	-	100

S.Y. B. Sc. (Microbiology) SEMESTER III

Core course - II

COURSE TITLE: Genetics, Virology & Taxonomy

COURSE CODE: 22US3MBCC2GVT- [CREDITS - O2]

Course Learning Outcomes

After the successful completion of the Course, the learner will be able to:

- 1. Describe the organization of DNA and features of genetic code in prokaryotic organisms.
- 2. Describe the structure, classification and replication of different viruses and their major features.
- 3. Evaluate the different methods employed in bacterial taxonomy.

Module 1	Informational Macromolecules	[12L]
Learning Obje	ectives:	

This module is intended to familiarize the learner with :

- 1. Central dogma of the cell
- 2. Structural aspects of ds DNA and prokaryotic chromosomes.
- 3. Historical aspects and significance of the Genetic code.

Learning Outcomes:

By the end of this course learners will be able to:

- 1. List the contributions of prominent scientists in elucidating the structure of the double helix.
- 2. Explain the structural features of double stranded DNA.
- 3. Describe the organization of DNA in a prokaryotic chromosome.
- 4. Differentiate between A, B and Z forms of DNA.
- 5. Describe features of Genetic code and variations of the code.

6. Analyse reasons for degeneracy of the genetic code.			
1.1	Central dogma of the cell	O2	
	a) Informational macromolecules		
	b) Basics of exons and introns		
1.2	Organization of DNA in prokaryotic chromosomes	O5	
	Structure of double helix DNA:		
	a) Features		
	b) Discovery		
	c) A, B and Z forms of DNA		
	d) Important features of DNA structure-Palindrome structures		
	e) Circularity, Supercoiling of prokaryotic chromosome and role of Topoisomerases		
	f) Introduction to special types of RNA- snRNA, siRNA, snoRNA, miRNA, stRNA (Only definitions)		
1.3	Genetic Code	O5	
	a)Historical perspective		
	b)Features of the genetic code		
	c)Wobble hypothesis		
	d)Variations to the genetic code		

- Russel, I P. J. (2006), —iGenetics-A molecular approach, 3rd edition. New York: Pearson Education International.
- Madigan, M., Martinko, J., Parkar, J., (2009), Brock Biology of

Viroids.

2.4

References:

01

microorganisms, 12th edition. Pearson Education International.

- Nelson, D. and Cox, M. (2008). Lehninger Principles of Biochemistry. 5th edition. New York: W H Freeman and Company.
- Nelson, D. and Cox, M. (2017). Lehninger Principles of Biochemistry. 7th edition. New York: W H Freeman and Company.

	. ,					
Module 2	[12L]					
Learning Obje	ectives:					
This module i	s intended to familiarize the learner with:					
1. Basic c	oncepts of viral architecture					
2. Basis o	f viral classification					
3. Replica	ation of different types of viruses					
Learning Out	comes:					
 Describe each. List the Describe 	cessful completion of the module, the learner will be able the structure of different types of viruses with or e criteria for viral classification. The the replication of different viruses and compare major	ne example r features.				
2.1	Viral architecture- Virus structure and morphology of	04				
	plant (TMV) and animal viruses (Influenza virus, HIV).					
2.2 Viral classification: Baltimore, ICTV O2						
2.3	The viral replication cycle- attachment, penetration,	05				
	uncoating, types of viral genome and their					
	replication, assembly, maturation and release. Life					
	cycle of TMV, Influenza Virus in detail.					

- Shors T. (2009). Understanding Viruses. Massachusetts: Jones and Bartlett Publisher
- Carter J.(2007). Virology-Principles and Applications: John wiley & Sons, Ltd.

Module 3	Taxonomy	[12L]

Learning Objectives:

The module is intended to:

- 1. Explain the basic concepts under Taxonomy
- 2. Discuss the phylogenetic and classical approaches employed in bacterial taxonomy.

Learning Outcomes:

After the successful completion of the module, the learner will be able to:

- 1. Explain the rules of binomial nomenclature
- 2. Apply the concepts of phylogenetic and classical approaches of taxonomy for classification and identification of the isolate.
- 3. Evaluate the newer methods of bacterial taxonomy

3.1	Taxonomic ranks, Binomial Nomenclature	01
3.2	Phylogenetic approach and Classical approach to	01
	taxonomy	
3.3	Numerical taxonomy	03
3.4	Newer methods to Bacterial Taxonomy:	06
	a) DNA base composition and Tm	
	b) Nucleic acid Hybridisation.	
	c) DNA Sequencing	
	d) RNA Fingerprinting and Sequencing.	
	e) Ribotyping.	
	f) Fatty acid analysis	
1		

K J Somarya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

	g) Automated analysis: VITEK, API	
3.5	Bergey's Manual	01
	Volume description, List of Bacterial groups	

References:

- Prescott, Harley and Klein. (2008). Microbiology. 7th edition.
 McGraw Hill international edition.
- Stanier. R.Y., Ingraham, J.L., Wheelis, M.L., Painter, R.R, (1987). General Microbiology, 5th edition. The Macmillan press Ltd.
- Frobisher, M. (1974) Fundamentals of Microbiology.9th Edition. W.B. Saunders Company.
- Prakash S. Bisen, Mousumi Debnath, Godavarthi B. K. S. Prasad (2012), Microbes:Concepts and Applications, Wiley-Blackwell publications
- Eugene Rosenberg (Editor-in-Chief) Edward F. DeLong, Stephen Lory, Erko Stackebrandt and Fabiano Thompson (Eds.), (2014) The Prokaryotes Other Major Lineages of Bacteria and the Archaea. 4th Edition. Springer Publication

S.Y.B.S.c (Microbiology)

Semester III - Practicals

Course II

Course Code: 22US3MBCC2P

Credits: O1

Sr.No	Experiments	No of Hours
1.	Enrichment and enumeration of phages by phage assay method. (Demonstration)	06
2.	Identification of a bacterial isolate using Bergey's manual	10
3	Extraction of DNA from onion and E.coli.	05
4	Estimation of DNA by UV spectroscopy	O5
5	Determination of purity of DNA by spectroscopy	O4

Question Paper Template

S.Y. B. Sc. (MICROBIOLOGY) SEMESTER III

Core Course- II

COURSE TITLE: Genetics, Virology & Taxonomy

COURSE CODE: 22US3MBCC2 GVT [CREDITS - O2]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	10	10	_	05	05		30
II	O5	15	_	10	_	_	30
III		5	10	10	5		30
Total marks per objective	15	30	10	25	10		90
% Weightag e	17	33	11	28	11	_	100

S.Y. B. Sc. (Microbiology) SEMESTER III Course - III

COURSE TITLE: Environmental Microbiology

COURSE CODE: 22US3MBCC3EVM

[CREDITS - O2]

Course Learning Outcomes

After the successful completion of the Course, the learner will be able to:

- 1. Analyse the significance of synchronous and regulated networks of different biogeochemical cycles functional in the ecosystem.
- 2. Summarize the data on different types of microbial products.
- 3. Implement the different methods of waste management.
- 4. Evaluate the potential of microbes in bioremediation.

Module 1	Biogeochemical Cycles	[12L]
Learning Obje	ectives:	

- **,**
 - 1. To describe different biogeochemical cycles operating in ecosystems.
 - 2. To correlate the sulphur cycle to different reduced habitats.
 - 3. To distinguish between different nitrogen sources.

Learning Outcomes: After the successful completion of the module, the learner will be able to:

- 1. Schematically illustrate the flow of nutrients in the ecosystem.
- 2. Appreciate the dynamic exchange of major elements between biotic and abiotic components.
- 3. Recognize the role of phosphate solubilizers.
- 4. Distinguish between nitrification and denitrification.
- 5. Describe the degradation of carbon-based polymers.

1.1	Concept of Biogeochemical cycle and its significance.	01

1.2	Carbon cycle: Microbial degradation of cellulose,	03
	hemicelluloses, lignin and chitin.	
1.3	Nitrogen cycle: Nitrogen fixation, ammonification, nitrification, denitrification and nitrate reduction	03
1.4	Phosphorus cycle: Phosphate immobilization and solubilisation	O2
1.5	Sulphur cycle: Microbes involved in sulphur cycle	03

- Barton LL & Northup DE (2011). Microbial Ecology. Ist edition, Wiley
 Blackwell, USA Campbell RE. (1983). Microbial Ecology. Blackwell Scientific
 Publication, Oxford, England.
- Atlas RM and Bartha R. (2000). Microbial Ecology: Fundamentals & Applications. 4th edition. Benjamin/Cummings Science Publishing, USA.

Module 2	Microbial derived value-added products	[12L]
Learning Obje	ctive:	

This module is intended to

1. Describe the features, production and uses of Biofuels.

Learning Outcomes:

After the successful completion of the module, the learner will be able to

- 1. Discuss the significance of Biofuels.
- 2. Describe the production of biofuels.
- 3. Apply the use of biotechnology for improvement of biofuel production methods.

2.1	Biofuels:	O2
	2.1.1 Conventional fuels and their impact on the	
	environment	
	Oil, Coal, Natural gas	

Autonomous (Affiliated to University of Mumbai)

	2.1.2 Advantages and disadvantages of Biofuels.		
	2.1.3 Conversion of Wood, Sugar and starch crops into		
	biofuel,		
	2.1.4Hydrocarbon producing crops		
2.2	Biogas:	03	
	2.2.1 Benefits, Stages of Anaerobic digestion, types of		
	digesters. factors affecting.		
2.3	Bioethanol, Biobutanol:	02	
	2.3.1 Advantages of Bioethanol over Petrol		
	2.3.2 Production and Recovery of Bioethanol		
	2.3.3 Future directions for Research and Development		
2.4	Biodiesel:	01	
	2.4.1 Lipids as a source of Biodiesel		
	2.4.2 Biodiesel from hydrocarbons		
2.5	Biohydrogen:	02	
	2.5.1 Methods of production: (List of names of the		
	methods)		
	2.5.2 Routes of production of Biohydrogen,		
	2.5.3 Anaerobic fermentation ,		
	2.5.4 Photosynthetic algae		
	2.5.5 In-vitro photosynthetic hydrogenase system		
2.6	Microbial Fuel Cells	02	
	2.6.1 Features and applications.		
	2.6.2 Comparison among different types of Biosensors		
B. D. Singh (2010). Riotechnology. Expanding Horizon, 3rd Revised.			

- B. D. Singh, (2010). Biotechnology- Expanding Horizon, 3rd Revised Edition, Kalyani Publishers.
- R.C. Dubey, A TextBook of Biotechnology.4th edition, S.Chand & Co Ltd, New Delhi

Module 3	Microbial Bioremediation	[12L]		
Learning Obj		[120]		
,	is intended to:			
l. Define	the concept of bioremediation and allied terms.			
2. Descri	be different types of bioremediation.			
3. Explair	n the types and applications of Biosensors.			
Learning Out	ccomes:			
After the suc	cessful completion of the module, the learner will be abl	e to:		
1. Descri	be different methods of bioremediation.			
2. Appre	ciate the difference between in-situ and ex-situ bior	emediation		
metho	ods.			
3. Recog	nize the role of biosurfactants in bioremediation.			
4. Repres	sent the structural components of Biosensors.			
5. Explair	n the applications of Biosensors.			
6. Cite t	he characteristic features of biosensors			
3.1	Concept of Bioremediation and its significance:	02		
	3.1.1 Types- in-situ and ex-situ bioremediation.			
	Jim Types in sied died ext sied eiereinediatien.			
3.2	Methods:			
). <u>Z</u>	Bioremediation of hydrocarbons, dyes, paper and	05		
	, , , , ,			
	pulp industry, heavy metals, xenobiotics, common			
	pesticides, oil spills.			
3.3	3.3.1 Biofilters, Bioaugmentation and Bioventing	01		
	3.3.2 Role of Biosurfactants in bioremediation			

3.4	Biosensors:	01
	3.4.1 Introduction and features	
	3.4.2 Schematic representation of components of a	
	Biosensor	
	3.4.3 Types of Biosensors: Brief description of each	02
	type.	
	3.4.4 Advantages of Biosensors	01
	3.4.5 Applications of Biosensors	

- Singh A, Kuhad, RC & Ward OP (2009). Advances in Applied Bioremediation. Volume 17, Springer-Verlag, Berlin Heidelberg.
- B. D. Singh, (2010). Biotechnology- Expanding Horizon, 3rd Revised Edition, Kalyani Publishers.
- R.C. Dubey, A TextBook of Biotechnology.4th edition, S.Chand & Co Ltd, New Delhi 15.
- S. N. Jogdand, (1999). Advances in Biotechnology, 2nd Revised Edition, Himalaya Publishing House.

S.Y.B.S.c (Microbiology)

Semester III - Practicals

Course III

Course Code: 22US3MBCC3P

Credits:O1

Sr.No	Experiments	No.of Hours
1.	Isolation and characterization of phosphate solubilising microorganisms.	O4
2.	Isolation and characterization of ligninolytic fungi.	O4

3.	Isolation and characterization of chitinase producing microorganisms.	O4
4.	Enrichment, isolation and characterization of dye degrading microorganisms.	06
5.	Study of Microbial fuel cell- Demonstration/ visit to an institute producing Biofuels.	06
5.	Enrichment, isolation and characterization of phenol degrading microorganisms.	06

Question Paper Template

S.Y. B. Sc. (MICROBIOLOGY) SEMESTER III

Core Course- III

COURSE TITLE: Environmental Microbiology

COURSE CODE: 22US3MBCC3EVM

[CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I		5	5	10	10	-	30
II		5	5	10	10	-	30
III	_	5	10	O5	10	-	30
Total marks per objective		15	20	25	30	-	90
% Weightage	_	17	22	28	33	_	100

S.Y. B. Sc. (MICROBIOLOGY) SEMESTER III

Core course - IV

COURSE TITLE: Soil Microbiology

COURSE CODE: 22US3MBCC4SOM [CREDITS - O2]

Course Learning Outcomes

After the successful completion of the Course, the learner will be able to:

- 1. Characterize soil as a living environment.
- 2. Apply techniques to cultivate and enumerate soil microorganisms.
- 3. Descibe the need, preparation, merits and demerits of biofertilizers.
- 4. Describe the need, preparation, merits and demerits of biopesticides

Module 1	Soil as a living environment	[12L]
Loarning Obj	octivos.	

Learning Objectives:

This module is intended to enable the learner to:

- 1. Give an account of physico-chemical characteristics of the Earth environment
- 2. Introduce the diversity of microorganisms in soil.
- 3. Elaborate the distribution of microorganisms in different soil environments.

Learning Outcomes:

After the successful completion of the module, the learner will be able to:

- 1. Describe physico-chemical characteristics of the Earth environment.
- 2. Explain abiotic and biotic stresses.
- 3. Summarize characteristics of different microorganisms in surface soils.
- 4. Compare and contrast microorganisms in shallow and deep subsurface environments.

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

1.2 Physico-chemical characteristics of the Earth	04
environment:	
1.2.1 Earth environments	
1.2.2 The solid phase	
1.2.3 The liquid phase	
1.2.4 Soil atmosphere	
1.3 Soil as a microbial environment:	01
1.3.1 Biotic stresses	
1.3.2 Abiotic stresses	
1.4 Microorganisms in surface soils:	03
1.4.1 Bacteria	
1.4.2 Actinomycetes	
1.4.3 Archaea	
1.4.4 Fungi	
1.4.5 Algae	
1.4.6 Protozoa	
1.5 Distribution of microorganisms in soil	01
1.6 Microorganisms in subsurface environments:	02
1.6.1 Microorganisms in shallow subsurface	
environments	
1.6.2 Microorganisms in deep subsurface	
environments	

References:

- Environmental Microbiology.(2014) 3rd edition, Ian L. Pepper. Elsevier Academic Press.
- Soil Microbiology and Biochemistry. (2007) 3rd edition. Elsevier Academic Press.

, ,	ted to University of Mumbai)	TRU
Module 2	Techniques for studying soil environment	[12L]
Learning Obje	ectives:	
This module i	s intended to:	
1. Familia	rize the learners with the techniques to cultivate and	enumerate
microc	organisms from soil.	
2. Enable	the learners to undertake field studies related to micr	oorganisms
in soil.		
3. Acquai	int the learners with new approaches to explore u	nculturable
bacter	ia.	
Learning Out	comes:	
 Apply Cultive Exami 	methods to study unculturable bacteria. ate fungi, algae and other organisms of environmental signe natural environments under controlled conditions.	gnificance.
2.1	Extraction of cells from soil	01
2.2	Plating methods:	02
	2.2a Unculturable bacteria	
	2.2.b New approaches	
2.3	Culturing microbial population from soil:	05
	Heterotrophic Plate Count	
	Cultivation of special populations- fluorescent	

2.4

2.5

pseudomonads,

Cultivation of fungi and algae

Microcosms and field studies.

• Environmental Microbiology. (2014) 3rd edition, lan L. Pepper. Elsevier

nitrifying

degrading xenobiotics/ synthetic compounds.

bacteria,

organisms

02

02

Academic Press.

• Environmental Microbiology, A Laboratory Manual. (2004) 2nd edition. Elsevier Academic Press.

Module 3	Biofertilizer and Biopesticide [12L]					
Learning Obj	ectives:					
The module i	s intended to:					
1. Provid	e an overview of the relevance of use of biofert	tilizers and				
biopes	ticides.					
2. Familia	arize with the microbes used as biofertilizers and biopesti	cides				
3. Elabor	ate the advantages and disadvantages of biofert	ilizers and				
biopes	ticides.					
Learning Out	comes:					
After the suc	cessful completion of the module, the learner will be able	e to:				
1. Outline	e the relevance of use of biofertilizers and biopesticides.					
2. Review	the use of bacteria and fungi as biofertilizers and biope	sticides				
3. Evalua	te the merits and demerits of biofertilizers and biopestici	ides.				
3.1	Bio fertilizers: a) Different microbes used as	01				
	biofertilizers for various crop plants and their					
	advantages over chemical fertilizers. b) Symbiotic and					
	non-symbiotic nitrogen fixers.					
3.2	Azolla & BCA Bio fertilizers: a) Characteristics	O2				
	Production c) Methods of application					
3.3	PSB Bio fertilizer (Phosphate solubilising bacteria) a)	O2				
	Mechanism of phosphate solubilisation b) Production					
	c)Methods of application on field					
3.4	VAM Biofertilizer a) Characteristics & types of	01				
	association b) Production					

3.5	Methods of applications of biopesticide a) Seed	02
	inoculation b) Vegetative part inoculation c) Soil	
	inoculation d) Use of Mycorrhizal fungi	
3.6	Bt crops: a) Bacillus thuringiensis as a source of	01
	insecticidal protein b) Examples of Bt crops	
3.7	Biocontrol of Insect pest a) Bacterial pesticide b) Viral	01
	pesticide c) Mycopesticide	
3.8	Biological control of weeds a) Mycoherbicides b)	01
	Insect as biocontrol agents	
3.9	Mass production of biopesticide a) Solid substrate	01
	fermentation: Fungal Biopesticide	

- Bagyaraj, D. J. and Rangaswami, G. (1993). Agricultural Microbiology. India: Prentice-Hall. ,ISBN, O876926685, 978O87692668O.
- Sharma, A. K.. (2002). Biofertilizers for Sustainable Agriculture. India Agro-Bios. ISBN-10: 9788177541182.
- Integration of Insect-Resistant Genetically Modified Crops within IPM Programs: edited by Jörg Romeis, Anthony M. Shelton, George Kennedy.(2008)
- Dubey, R.C. A TextBook of Biotechnology. 5th revised edition (2014) New Delhi: S.Chand & Co Ltd
- Fulekar, M.H. Environmental Biotechnology. (2010) Taylor and Francis group, CRC Press

S.Y.B.S.c (Microbiology)

Semester III - Practicals

Course IV

Course Code: 22US3MBCC4P

Credits: O1

Sr.No	Experiments	No of Hours
1	Determination of soil moisture content	O2
2	Contact slide method	04
3	Enumeration of bacteria -heterotrophic plate count	03
4	Slide culture of fungi	05
5	Enrichment and isolation of pesticide degraders.	08
6	Isolation of <i>Azotobacter</i> and <i>Rhizobium</i>	02
7	Preparation of Biofertilizer and its efficacy testing	06

Question Paper Template

S.Y. B. Sc. (Microbiology) SEMESTER III

Core Course- IV

COURSE TITLE: Soil Microbiology

COURSE CODE:22US3MBCC4SOM [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	O5	10	O5	O5	05	I	30
II		10	05	10	05		30
III	O5	10	05	O5	05		30
Total marks per objective	10	30	15	20	15	1	90
% Weightage	11	33	17	22	17	_	100

S.Y. B. Sc. (Microbiology) SEMESTER IV

Core course - I

COURSE TITLE: Immunology

COURSE CODE: 22US4MBCCI-IMM [CREDITS - O2]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Describe the basic information regarding Innate Immunity and Virulence factors.
- 2. Explain defence mechanisms against invading pathogens.
- 3. Recognize the molecular nature of antigens and antibodies along with the role of different cells and their surface molecules in acquired immunity.

Module 1	Immune system	[12L]
Learning Obj	ectives:	
This module i	s intended to enable the learner to:	
1) List var	ious types of human blood cells and its function.	
2) Explain	the concept of Antigen presentation.	
3) Recogi	nise the differences between primary and secondary	lymphoid
organs	and tissues.	
Learning Out	come:	
After the succ	cessful completion of the module, the learner will be able	e to
 Classify 	various blood cells and relate its functions.	

2. Differentiate between granulocytes and agranulocytes.

3. Infer the anatomy and significance of primary and secondary lymphoid organs and tissues

1.1	Overview of host resistance: a) Introduction of host	02
	resistance b) Immunity : types of immunity c) Major	

	components of the mammalian immune system				
1.2	Cells of immune system:	07			
	a) Pluripotent stem cells in the bone marrow				
	b) Normal adult blood count				
	c) Monocyte and macrophages system				
	d) Polymorphonuclear leukocytes: basophils,				
	eosinophils, neutrophils				
	e) Mast cells				
	f) Dendritic cells				
	g) Lymphocytes : T and B lymphocytes, Natural killer				
	cells				
1.3	Organs and tissues of the immune system. a) Primary	03			
	lymphoid organ and tissue b) Secondary lymphoid				
	organ and tissue.				

- Prescott, Harley and Klein. (2008). Microbiology. 7th edition McGraw
 Hill international edition.
- Thomas J. Kindt, Richard A. G, Barbara A. Osburne (2007) Kuby Immunology: New York: W. H. Freeman and Company
- Pathak, S., Palan U. () Immunology Essential and Fundamental. Bombay:
 Pareen publications.
- Khan F.H. The elements of immunology.1 st edition. Pearson Education.
- kuby.

Module 2	Concept of antigen and antibody	[12L]

Learning Objectives:

This module is intended to enable learner to:

- 1. Describe the concepts of antigen and immunogen
- 2. Explain different types of antigens
- 3. Explain different types of immunoglobulin structure and their functions.

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Explain different types of antigen.
- 2. List the various properties of antibodies.
- 3. Differentiate amongst different types of immunoglobulins.

	<u>, </u>	
2.1	Introduction a) Terms of antigen, immunogen,	01
	hapten, epitope, difference between these terms b)	
	Properties of immunogen that contribute to	
	immunogenicity	
2.2	Immunogenicity of some natural substances	01
2.3	Types of antigen : a) Heterophiles antigen b) Isophile	01
	antigen c) Sequestered antigens d) Bacterial antigen	
2.4	Factor influencing the immune response of host	01
2.5	Adjuvants : a) Types : Freund's complete and	01
	incomplete adjuvant and other examples b)	
	Mechanism	
2.6	Basic structure of antibodies : a) Main features of	02
	immunoglobulin b) Immunoglobulin structure c)	
	Chemical and enzymatic methods revealing basic	
	antibody structure	
2.7	Structure function relationship of antibodies and	01
	structure of immunoglobulin in relation to basic	
	antigen binding. Concepts of affinity and avidity	
2.8	Types of antibodies : a) Isotype b) Allotype c)	O2
	Idiotypes	
2.9	Isotypes of immunoglobulin properties, structure, and	01
	function: IgG, IgM, IgD, IgE, and IgA.	
2.10	Immunoglobulin receptors	01

- Pathak, S., Palan U. () Immunology Essential and Fundamental. Bombay:
 Pareen publications.
- Khan F.H. The elements of immunology.1 st edition. Pearson Education.
- Thomas J. Kindt, Richard A. G, Barbara A. Osburne (2007) Kuby
 Immunology: New York: W. H. Freeman and Company

	3/	
Module 3	Concept of antigen and antibody reaction	[12L]
Learning Obj	ectives:	
The module i	is intended to	
1. Explair	n the mechanism of antigen antibody reaction.	

- 2. Categorise various reactions between antigen-antibodies.
- 3. Demonstrate the applications of antigen-antibody reactions .

Learning Outcome:

After the successful completion of the module, the learner will be able to

- Differentiate between types of in vitro reactions between antigen and its homologous antibody.
- 2. Illustrate various applications of antigen antibody reaction in disiease diagnosis
- 3. Evaluate different types of antigen antibody reaction.

3.1	Introduction of terms used in serological reactions : a)	02
	Agglutination b) Precipitation c) flocculation d)	
	Agglutinin e) Agglutinogen f) Precipitin	
	g) Precipitinogen	
3.2	a) Comparative efficiency of various immunoglobulins	01
	in different serological reactions b)Important	
	parameters in serological test	
3.3	Zone phenomenon	01
3.4	Agglutination test : a) Mechanism b) Applications -	O2

	Slide agglutination Tube test (Widal test)	
3.5	Precipitation reaction : a) Mechanism of	O2
	precipitation: lattice hypothesis b) Types of	
	precipitation c) Flocculation	
3.6	Immuno-diffusion	01
3.7	Complement fixation	01
3.8	Immunofluorescence test	01
3.9	ELISA	01

- Pathak, S., Palan U. () Immunology Essential and Fundamental. Bombay: Pareen publications.
- Thomas J. Kindt, Richard A. G, Barbara A. Osburne (2007) Kuby Immunology: New York: W. H. Freeman and Company
- Ananthanarayan and Paniker. (2009). Textbook of Microbiology. 8 th Edition. Universal Press
- Khan F.H. The elements of immunology. Ist edition. Pearson Education.

S.Y.B.S.c (Microbiology)

Semester IV - Practicals

Course I

Course Code: 22US4MBCCIP

Immunology

Credits: O1

Sr.No	Experiments	No. of Hours
1	Blood staining	05
2	Blood grouping	O2
3	Single radial immunodiffusion and Double immunodiffusion	O5

4	Widal qualitative and quantitative – Demonstration	06
5	Preparation of O and H antigens	O8
6	ELISA test(demonstration)	04
7	Internship at a diagnostic laboratory (4 weeks)	-

Question Paper Template

S.Y. B. Sc. (Microbiology) SEMESTER IV

Core Course- I

COURSE TITLE:

COURSE CODE: 22US4MBCCI-IMM [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	10	10	O5	05			30
II	10	10	-	10			30
III	10	5	10	5			30
Total marks per objective	30	25	15	20			90
% Weightage	33%	28%	17%	22%			100

Module 1

[12L]

S.Y. B. Sc. (Microbiology) SEMESTER IV

Core course - II

COURSE TITLE: Concepts in Biochemistry

COURSE CODE: 22US4MBCC2CBC [CREDITS - O2]

Course Learning Outcomes

After the successful completion of the course, the learner will be able to:

- 1. Explain the principles of thermodynamics with respect to a living cell.
- 2. Evaluate the role of different metabolic pathways in cellular metabolism.
- 3. Analyze the basic structural and functional aspects of enzymes in the functioning of a living cell.

Thermodynamics

Learning Obj	ectives:		
This module is intended to:			
1. Familia	liarize the student with basic concepts of thermodynamics from a		
biologi	biological perspective.		
2. Introd	2. Introduce various common ATP yielding mechanisms in a cell		
Learning Outcomes:			
After the suc	cessful completion of the module, the learner will be able	e to	
1. Define	e terms related to Thermodynamics.		
2. Differe	entiate between ΔG and $\Delta G'^o$		
3. Explain the relation of K'eq and ΔG.			
4. Describe structure and significance of ATP.			
5. Explain role of high energy compounds			
6. Identify and compare energy yielding mechanisms.			
1.1	a) Scope of thermodynamics:	04	
	First and second laws of thermodynamics system,		
	universe, enthalpy, entropy.		

	b) Concepts: Gibbs free energy, free energy change,	
	exergonic and endergonic reactions, relation	
	between Keq and ΔG, ΔG and ΔG' ^o Keq and K'eq.	
1.2	a) Structure and properties of ATP	04
	b) Free energy change for hydrolysis of ATP and	
	other high-energy compounds viz. 1,3-	
	diphosphoglyceric acid and phosphoenolpyruvate.	
1.3	a) Types of ATP generating reactions:	04
	Substrate level phosphorylation, oxidative	
	phosphorylation and photophosphorylation.	
	b) Energy yielding metabolic mechanisms:	
	1. Fermentation: alcoholic and lactic acid	
	2. Respiration; aerobic and anaerobic	
	3. Photosynthesis: Cyclic and non-cyclic	

- Nelson, D. and Cox, M. (2005). Lehninger Principles of Biochemistry. 5 th edition. New York: W H Freeman and Company.
- Tortora Funke and Case. (1998). Microbiology An Introduction. 6 th edition Addison Weseley Longman Inc.
- Conn P., Stumpf, G., Bruening and Doi R. (1995). Outlines in Biochemistry. 5 th edition. New York: John Wiley and Sons .

Module 2	Introduction to Metabolism	[12L]
Learning Objectives:		

This module is intended to:

- 1. Familiarize the learner with basic terminologies of metabolism.
- 2. Introduce the learner to the role of redox reactions.
- 3. Enable the learner to understand types of metabolic pathways with details of two central metabolic pathways

Learning Outcomes:

After the successful completion of the module, the learner will be able to

- 1. Compare features and significance of anabolism and catabolism.
- 2. Explain link between anabolism and catabolism.
- 3. Discuss the role of pyridine nucleotides.
- 4. Explain different types of biochemical pathways with examples.
- 5. Schematically represent EMP and TCA pathway.

2.1	Metabolism- catabolism, anabolism, link between	02
	catabolism and anabolism viz. ATP, reducing power,	
	precursors (list of 12 precursors), amphibolic pathways.	
2.2	Biological oxidation reduction reactions, role of	O2
	pyridine nucleotides in metabolism	
2.3	a) Types of biochemical pathways- linear, branched	04
	and cyclic with one example each. b) Constitutive and	
	Inducible pathways with one example each	
2.4	EMP and TCA with structures	04

References:

- Nelson, D. and Cox, M. (2005). Lehninger Principles of Biochemistry. 4 th edition. New York: W H Freeman and Company.
- Palmer, T.. (2004). Enzymes, Biochemistry, Biotechnology and Clinical Chemistry. New Delhi: . East West Press Ltd.
- Conn P., Stumpf, G., Bruening and Doi R. (1995). Outlines in Biochemistry. 5 th edition. New York: John Wiley and Sons .

Module 3	Enzymology	[12L]

Learning Objectives:

The module is intended to:

- 1. Explain the basic concepts and mechanisms in Enzymology.
- 2. Describe the purification and separation of enzymes.
- 3. Evaluate the effect of different parameters on enzyme activity.

- 4. Introduce concepts in enzyme kinetics.
- 5. Describe allosteric enzymes and their role in metabolism.

Learning Outcomes:

After the successful completion of the module, the learner will be able to:

- 1. Describe the mechanism of enzyme action.
- 2. Compare and contrast between methods of enzyme purification.
- 3. Analyze the basic structural and functional aspects of enzymes in the functioning of a living cell.

	J J	
3.1.	3.1.a Basic concepts: Apoenzyme, Holoenzyme, Co-	01
	factors, Coenzymes, Prosthetic groups Mechanism of	
	enzyme action.	
	3.1.b Coenzymes: Table showing coenzyme, chemical	
	group transferred, and dietary precursor	
3.2	3.2.a Concepts of enzyme purification:	03
	Objectives and strategy in enzyme purification	
	Methods of homogenization and extraction	
	Methods of separation on the basis of:	
	Size or mass: Centrifugation, Dialysis	
	Solubility: Salting-in, salting-out, Solvent extraction	
	3.2.b Definitions of Enzyme Unit: Specific activity,	
	Katal, International Unit	
3.3	Classification of enzymes:	01
	a. Six classes of enzymes and their mode of	
	action	
	b. Enzyme Nomenclature as per IUBMB	
3.4	Enzyme kinetics	03
	a) Michaelis- Menten equation and plot	

	b)Line-weaver Burk equation and plot	
	c) Km and Vmax	
	Multisubstrate enzyme reactions	
3.5	Effect of following parameters on enzyme activity:	01
	Enzyme concentration, substrate concentration, pH	
	and temperature	
3.6	Enzyme Inhibition: Description and plots: Reversible	01
	and irreversible (Competitive, Uncompetitive and	
	Non-competitive)	
3.7	Allosteric enzymes	02
	a) Structure, kinetics (sigmoidal curve)	
	b) Activation : concerted and sequential models	

- Nelson, D. and Cox, M. (2005). Lehninger Principles of Biochemistry. 4 th edition. New York: W H Freeman and Company.
- Conn P., Stumpf, G., Bruening and Doi R. (1995). Outlines in Biochemistry. 5 th edition. New York: John Wiley and Sons .

S.Y.B.S.c (Microbiology)

Semester IV - Practicals

Course I

Course Code: 22US4MBCC2P

Credits: O1

Sr.No	Experiments	No. of Hours
1	Production of Invertase from yeast Crude enzyme preparation by ammonium sulphate precipitation Purification by dialysis	O5
2	Effect of parameters like enzyme concentration, substrate concentration, pH and temperature on activity of yeast Invertase. Michaelis-Menten and Line-weaver Burk plot Determination of Km and Vmax	20
3	Problems on Bioenergetics	O5

Question Paper Template

S.Y. B. Sc. (Microbiology) SEMESTER IV

Core Course- II

COURSE TITLE: Biochemistry

COURSE CODE: 22US4MBCC2CBC [CREDITS - O2]

Module	Rememberi ng/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	ı	10	O5	10	O5	1	30
II	5	10		10	O5	ı	30
III	O5	10	O5	05	O5	I	30
Total marks per objective	10	30	10	25	15		90
% Weightage	11	33	11	28	17	_	100

S.Y. B. Sc. (MICROBIOLOGY) SEMESTER IV

Elective course - III

COURSE TITLE: Industrial & Food Microbiology

COURSE CODE: 22US4MBCC3IFM

[CREDITS - O2]

Course Learning Outcome

- 1. Articulate inoculum development plan for a fermentation process
- 2. Formulate a fermentation media
- 3. Evaluate the different modes of fermentation
- 4. Appreciate the application of Microbes in Food industries.
- 5. Investigate foodborne illnesses
- 6. Appraise the different food preservation methods.

Module I	Module 1 Fermentation Technology [12L]			
Learning Objectives: This module is intended to				
1. Familia	rize with the different types of fermentation media com	ponents.		
2. Apply	the principles underlying Inoculum development.			
3. Analyz	e the choice of appropriate mode of fermentation.			
Learning Out	come:			
After the suc	cessful completion of the module, the learner will be able	e to		
1. Plan ar	n inoculum development for a given production.			
2. Disting	uish the different modes of fermentation.			
3. Formulate the media for a given industrial production.				
1.1	Fermentation Media:	05		
	a) Concept of defined and undefined media			

	b) Medium formulation	
	-Water	
	- Cellular yield coefficient	
	-Energy and carbon sources, nitrogen sources,	
	minerals, chelators, growth factors, buffers,	
	precursors, inhibitors, inducers, steering agents,	
	antifoam agents	
	c)Animal Cell Culture Media (Serum, serum-free	
	media supplements, protein free media, trace	
	elements, osmolality, pH, non nutritional media	
	supplements)	
1.2	Inoculum development:	O2
	a) Definition	
	b) Principles and various aspects of inoculum	
	development:	
	- Inoculum size	
	-Inoculum media and incubation conditions	
	-Transfer of microbial growth	
	-Contamination	
	-Back mutation	
	c)Example: Inoculum development in the production	
	of Sagamicin by Micromonospora spp.	
1.3	Types of Fermentation:	05
	a) Principle, Concept, advantages and limitations of -	
	-Batch, Continuous, fed-batch	
	-Aerobic, Anaerobic, Surface, Submerged, Solid	
	Substrate	
References:	<u> </u>	

• Stanbury PF, Whitaker A and Hall SJ. (2006). Principles of Fermentation

Technology. 2nd edition, Elsevier Science Ltd.

- Fermentation Technology (Vol.: I and II Set) H A Modi, Published by Pointer, Jaipur, 2009
- Patel A.H. (1996). Industrial Microbiology. 1st edition, Macmillan India
 Limited
- Casida LE. (1991). Industrial Microbiology. 1st edition. Wiley Eastern Limited.

Module 2 Spoilage causing agents and their detection in food. [12L]

Learning Objectives:

This module is intended to

- 1. Summarize the spoilage causing agents in food and food products
- 2. Apply methods for enumeration of food pathogens
- 3. Investigate foodborne outbreaks

Learning Outcome:

- 1. Elaborate the importance of food microbiology and food safety
- 2. Appreciate the need for microbiological quality control
- 3. Evaluate the foodborne illnesses investigation procedures for ensuring food safety & hygiene.

2.1	Spoilage:	O5
	a) Introduction to Food Spoilage, Spoilage of Fruits, Vegetables, and their Products.	
	b) Spoilage of Canned Food, Spoilage of Bakery and Egg Products.	
	c) Spoilage of Meat, Fish and SeaFood.	
	d) Current Food Safety Issues.	

2.2	Detection of food pathogens: a) Advances in Isolation and Enumeration of Microorganisms in Food: Molecular methods and Immunological methods.	03
2.3	 Foodborne Outbreaks: a) Bacterial Agents for Foodborne Illnesses. b) Fungal and Algal Agents for Foodborne Illnesses. c) Foodborne Animal Parasites. d) Investigation of Foodborne Illnesses outbreaks. 	O4

- Adams MR and Moss MO. (1995). Food Microbiology. 4th edition. New Age International (P) Limited Publishers, New Delhi, India.
- Jay JM, Loessner MJ and Golden DA. (2005). Modern Food
 Microbiology. 7th edition, CBS Publishers and Distributors, Delhi, India.
- Tanner FW, and Tanner LP (1953). Food-Borne Infections and Intoxications. 2nd edition. Champaign, IL:Garrard Press.
- Mariateresa Ferone, Aoife Gowen, Séamus Fanning, Amalia G. M. Scannell (2000). Microbial detection and identification methods: Bench top assays to omics approaches. https://doi.org/10.1111/1541-4337.12618

Module 3	[12L]	
Learning Obj	ectives:	
The module i	s intended to	

1. Familiarize yourself with factors affecting microbial growth in food products.

2. Evaluate the different food preservation methods.

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Elaborate the role of various factors impacting survival of microorganisms in food.
- 2. Apply the various techniques for enumeration of microbes in food samples.
- 3. Evaluate the methods of food preservation.

3.1	 a) Introduction to Food Microbiology and Food Safety b) Microflora of Food c) Intrinsic Factors and Extrinsic Factors Affecting Microbial Growth and Survival in Food. 	О3
3.2	a) Food Preservation: i) Principles of Food Preservation and Significance ii) Preservation of Food by Physical Methods – Low and High Temperatures, Radiations	O4
3.3	a) Preservation of Food by Chemical Methodsb) Biopreservation of Food	O2
3.4	 a) Modified Environment for Storage of Food b) Fermentative Microorganisms as Food and Value-Added Product c) Lactic Fermentation in Food. 	03

References:

• Adams MR and Moss MO. (1995). Food Microbiology. 4th edition. New

Age International (P) Limited Publishers, New Delhi, India.

- Banwart JM. (1987). Basic Food Microbiology. 1st edition. CBS Publishers and Distributors, Delhi, India.
- Jay JM, Loessner MJ and Golden DA. (2005). Modern Food
 Microbiology. 7th edition, CBS Publishers and Distributors, Delhi, India.

S.Y. B. Sc. (MICROBIOLOGY) SEMESTER IV

Core course - III

PRACTICAL

COURSE TITLE: Industrial & Food Microbiology

COURSE CODE: 22US4MBCC3P

[CREDITS - O2]

Sr.No	Experiments	No. of Hours
1	Comparative study of solid state and submerged fermentation.	O4
2	Food preservative –Sugar and Salt (MIC)	O4
3	Molecular methods for detection of food borne pathogens: Demo	O2
4	Selective isolation of food spoilage organism: a. Detection and Determination of Coliforms, fecal coliforms in food and beverages. b. DMC for Sauces, Tomato puree and Pastes. c. Detection Determination and Confirmation of	15

Autonomous (Affiliated to University of Mumbai)

	Staphylococcus in food.	
5	TDP and TDT	O5
6	Visit to Industry	

Question Paper Template

S.Y. B. Sc. (MICROBIOLOGY) SEMESTER IV

Core Course- III

COURSE TITLE: Industrial and Food Microbiology

COURSE CODE: 22US4MBCC3IFM

[CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	ı	5	10	10	5	ı	30
II	ı	10	5	10	5	ı	30
III	ı	10	10	5	5	ı	30
Total marks per objective	-	25	25	25	15	1	90
% Weightage	-	28%	28%	28%	16%	-	100

S.Y. B. Sc. (MICROBIOLOGY) SEMESTER IV

Elective Course - IV

COURSE TITLE: Dairy Microbiology

COURSE CODE: 22US4MBCC4DAM

[CREDITS - O2]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Describe the microbiology of milk
- 2. Apply different methods of processing raw milk
- 3. Elaborate the dairy processing technologies

Module 1	Introduction to Dairy Microbiology	[12L]
Learning Obje	ectives:	
This module i	s intended to	

- 1. Familiarize with the dairy history of India
- 2. Introduce the physical and chemical properties of milk constituents.
- 3. Apprehend the normal and abnormal microflora of milk.

Learning Outcome:

- 1. Appreciate the progress of dairy development in India
- 2. Describe the composition of milk and the physicochemical characteristics of the main constituents.
- 3. Enlist the microflora of milk.

1.1	Dairy Development in India:	03
	a) Role of National Dairy Development Board	

	(NDDB)	
	b) National Dairy Research Institute (NDRI)	
	c) Military dairy farm, Indian Dairy Corporation	
	(IDC)	
	d) Dairy Co-operatives, Milk Grid, Operation	
	Flood.	
1.2	Milk Chemistry and Constituents:	04
	a) Definition and Composition of milk	
	b) Types of Milk (skimmed, toned and	
	homogenized).	
	c) Concept of clean milk	
	d) Factors affecting quality and quantity of milk.	
	e) Nutritive value of milk	
	f) Physico-Chemical properties of milk.	
1.3	Microbiology of Milk:	05
	a) Microbial flora of milk	
	b) Normal and abnormal flora, their sources and	
	changes induced by them.	
	c) Sources of microorganisms in milk.	
	d) Biochemical types of bacteria in milk	
	e) Temperature characteristics of bacteria in milk	
	f) Pathogenic types of bacteria in milk (milk-	
	borne disease)	

- Richard K. Robinson, Dairy microbiology handbook third edition, 2002 by John Wiley and Sons, inc., New York.
- Eckles, C., Combs W. and Macy, H. Milk and milk products .4th edition. New Delhi: TMH.

- Casida LE. (1991). Industrial Microbiology. Ist edition. Wiley Eastern Limited.
- Microbiology by Pelczar McGraw-Hill Education, 199 ISBN 0074623206.

	· .	
Module 2	Milk- Processing and testing	[12L]
Learning Obj	ectives:	
This module i	is intended to	
1) Evaluate mi	ilk samples using different rapid platform tests	
2) Apply culti	ure-based methods to determine milk quality.	
3) Elaborate t	the packaging and storage requirements for milk and mil	k products

Learning Outcome:

- 1) Detect the microbiological quality of milk.
- 2) Grade the quality of milk.
- 3) Recommend packaging and storage criteria.

2.1	Processing of Milk	O2
	a) Pasteurization (HTLT, LTST, UHT)	
	b) Phosphatase test	
2.2	Analysis of milk:	O2
	Platform tests: a) Determination of acidity b)	
	Determination of pH c) Dye reduction tests (MBRT,	
	Resazurin)	
2.3	a) Sedimentation test, Alcohol test, Alizarin-	03
	Alcohol test, Clot on boiling.	
	b) Direct test for enumerating microbes in milk:	
	DMC, SPC, LPC, Thermoduric count,	
	psychrophilic count.	
2.4	Grading of milk: Raw and Pasteurized milk of milk	03

2.5	Shelf life, Packaging, Storage and distribution	O2

• Eckles, C., Combs W. and Macy, H. Milk and milk products .4th edition.

New Delhi: TMH.

• Casida LE. (1991). Industrial Microbiology. 1st edition. Wiley Eastern Limited.

Module 3	Fermented milk products	[12L]

Learning Objectives:

The module is intended to enable the learner to

- 1. Explain the importance of beneficial dairy starters.
- 2. Describe the production of fermented milk and dairy products
- 3. Elaborate the manufacturing details of important fermented milk products.

Learning Outcome:

- 1. Characterize different types of beneficial microorganisms that can be incorporated in the development of fermented dairy foods.
- 2. Prepare different types of fermented milk products possessing nutritional benefits.

3.1	Dairy starter	O1
3.2	Fermented	06
	Production a	

	a) Cheese: i) Fresh ii) Gouda iii) Swiss iv) Cheese with special flora.b) Butter	
3.3	Fermented dairy products: Characterization and Production of: a) Yoghurt b) Ice Cream c) Whipping Cream d) Evaporated Milk e) Sweetened Condensed Milk	O5

- P. Walstra T. J. Geurts A. Noomen A. Jellema M. A. J. S. van Boekel DAIRY TECHNOLOGY: Principles of Milk Properties and Processes. Marcel Dekker, INC. ISBN: 9780824702281 1999.
- Richard K. Robinson, Dairy microbiology handbook third edition, 2002 by John Wiley and Sons, inc., New York.

S.Y. B. Sc. (MICROBIOLOGY) SEMESTER IV

Core course - IV PRACTICALS

COURSE TITLE: Dairy Microbiology

COURSE CODE: 22US4MBCC4P

[CREDITS - O2]

Sr.No	Experiments	No. of Hours
1	Detection and Quantification of Starch in Milk	03
2	Determination of Total Solids (Gravimetric method)	03

3	Microbial analysis of milk:	20
	a. MBRT: Methylene Blue Reduction Test	
	b. RRT: Resazurin Reduction Test	
	c. DMC: Direct Microscopic Count	
	d. SPC: Standard Plate Count	
	e. LPC: Laboratory Pasteurization Count	
	f. Coliform count	
	g. Presumptive test	
4	Determination of Milk Fat (by Acid Digestion	04
	Method) in Cheese	
5	Visit to Dairy Industry	

Question Paper Template

S.Y. B. Sc. (MICROBIOLOGY) SEMESTER IV

Core Course- IV

COURSE TITLE: 22US4MBCC4DAM

COURSE CODE: [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	-	5	10	10	5		30
II	5	5	5	5	10		30
III	-	5	10	10	5		30
Total marks per objective	5	15	25	25	20		90
% Weightage	6%	16%	28%	28%	22%		100