



# Learning Outcome based Curriculum Framework

# (LOCF)

For

M.Sc. I Physics

Postgraduate Programme

From Academic year 2023-24





# Vision & Mission

#### Mission:

- Equip the student with knowledge and skills of their chosen vocation,
- Inculcate values.
- Provide them opportunities for all round growth and prepare them for life.

#### Vision:

- To equip the students with advanced knowledge and skills in their chosen vocation.
- To provide value-based education and opportunities to students.
- To help them to face challenges in life.
- To nurture a scientific attitude, temperament, and culture among the students.
- To continually review, develop and renew the approach to build India of the Founder's dream.

#### **Goals and Objectives:**

- To build a strong Academia-Industry bridge.
- To provide flexibility in the courses offered and proactively adapt to the changing needs of students and the society.
- To establish a centre for multidisciplinary activities.
- To mould individuals who would nurture the cultural heritage of our country and contribute to the betterment of the society.





# Board of studies in Physics

|   | Name                                        | Designation                | Institute/Industry       |  |  |  |  |  |
|---|---------------------------------------------|----------------------------|--------------------------|--|--|--|--|--|
|   |                                             | Head of the Department     |                          |  |  |  |  |  |
| 1 | Dr. Deepak More                             | Chairman                   | K J Somaiya College of   |  |  |  |  |  |
|   |                                             |                            | Science and Commerce     |  |  |  |  |  |
|   | Subject Expert nominated by Vice-Chancellor |                            |                          |  |  |  |  |  |
| 1 | Dr. Anita Kanwar                            | Principal                  | VES College, Chembur     |  |  |  |  |  |
|   |                                             |                            |                          |  |  |  |  |  |
|   |                                             | Subject experts            |                          |  |  |  |  |  |
| 1 | Dr. Nigvendra                               | Head of the                | Maharashtra College of   |  |  |  |  |  |
|   | Sharma                                      | Department                 | Arts, Science & Commerce |  |  |  |  |  |
| 2 | Dr Dinesh Kala                              | Head of the                | G N Khalsa College of    |  |  |  |  |  |
|   |                                             | Department                 | Arts, Science &          |  |  |  |  |  |
|   |                                             |                            | Commerce                 |  |  |  |  |  |
| 3 | Dr. Paresh Joshi                            | Academic Program           | HBCSE,Mumbai             |  |  |  |  |  |
|   |                                             | coordinator JSO            |                          |  |  |  |  |  |
|   | Representative fr                           | om Industry/corporate se   | ctor/allied area         |  |  |  |  |  |
| 1 | Mr. R. Venkataraman                         | Director                   | Tej Control System PVT   |  |  |  |  |  |
|   |                                             |                            | LTD. Thane 400064        |  |  |  |  |  |
|   |                                             | Meritorious Alumnus        |                          |  |  |  |  |  |
| 1 | Mr. Vikrant Jadhav                          | Founder Member             | Panacea Intech PVT LTD   |  |  |  |  |  |
|   | Exper                                       | ts other than parent unive | ersity                   |  |  |  |  |  |
| 1 | Dr. Raghunath                               | Associate Professor        | Department of Physics,   |  |  |  |  |  |
|   | Chelakkot                                   |                            | IITB, Mumbai             |  |  |  |  |  |
| 2 | Dr. R. R. Deshmukh                          | Professor                  | Department of Physics,   |  |  |  |  |  |
|   |                                             |                            | ICT, Mumbai              |  |  |  |  |  |
| L |                                             |                            |                          |  |  |  |  |  |



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



| 3  | Dr. Pruthul Desai  | Principal                    | P T Sarvajanik College, |
|----|--------------------|------------------------------|-------------------------|
|    |                    |                              | Surat                   |
|    |                    | Student Representative       |                         |
| 1  | Mr Mahindra Santra | Student                      | M.Sc-II                 |
|    | F                  | aculty of the specialisatior | 1                       |
| 1  | Dr. Geeta Nair     | Associate Professor          | K J Somaiya College of  |
|    |                    |                              | Science and Commerce    |
| 2  | Mr. A M Shaker     | Associate Professor          | K J Somaiya College of  |
|    |                    |                              | Science and Commerce    |
| 3  | Dr. Jitendra       | Associate Professor          | K J Somaiya College of  |
|    | Pendharkar         |                              | Science and Commerce    |
| 4  | Dr. Smita Survase  | Associate Professor          | K J Somaiya College of  |
|    |                    |                              | Science and Commerce    |
| 5  | Mr. Anshul Gupta   | Assistant Professor          | K J Somaiya College of  |
|    |                    |                              | Science and Commerce    |
| 6  | Mr. Deepak Jalla   | Assistant Professor          | K J Somaiya College of  |
|    |                    |                              | Science and Commerce    |
| 7  | Mr. Amit More      | Assistant Professor          | K J Somaiya College of  |
|    |                    |                              | Science and Commerce    |
| 8  | Dr. Pallavi Raote  | Assistant Professor          | K J Somaiya College of  |
|    |                    |                              | Science and Commerce    |
| 9  | Mr. Ketankumar     | Assistant Professor          | K J Somaiya College of  |
|    | Gayakwad           |                              | Science and Commerce    |
| 10 | Dr. Rucha Naik     | Assistant Professor          | K J Somaiya College of  |
|    |                    |                              | Science and Commerce    |
| 11 | Dr. Shruti Barve   | Assistant Professor          | K J Somaiya College of  |
|    |                    |                              | Science and Commerce    |





## Foreword

Autonomy reflects efforts for excellence in academic performances, capability of self-governance and enhancement in the quality of education. In the year 2012, the UGC and University of Mumbai conferred the Autonomous Status to K J Somaiya College of Science and Commerce. Post this recognition and having several accolades to our credit, we made significant changes to our existing syllabi to reflect the changing business, industrial and social needs. A holistic education that provides opportunities to gain and share knowledge, experiment, and develop beyond curriculum, is offered at our college.

An Autonomous college carries a prestigious image for the students and the teachers, and we have made a collaborative attempt to maintain a high level of quality in the standard of education that we impart.

Structured feedback obtained from the students, alumni and the experts from the industry and the changes suggested by them were duly incorporated in the syllabi. The Board of Studies constituted for each department meets to carry out in depth discussions about different aspects of the curriculum taking into cognizance the recent trends in the discipline.

The IQAC team has facilitated the conduct of several workshops and seminars to equip the faculty with the necessary skill set to frame the syllabi and competencies to deliver the same. Training was also provided to employ innovative evaluation methods pertaining to higher cognitive levels of revised Bloom's taxonomy. This has ensured the attainment of the learning outcomes enlisted in the syllabus. Audits are conducted to critically review the practices undertaken in teaching, learning and evaluation. Innovative learning methodologies such as project-based learning, experiential learning, and flip- class learning practiced by a committed





fleet of faculty and supported by several hands have been our unique outstanding propositions. All efforts have been made to nurture the academic ambitions as well as the skills in co-curricular activities of the most important stakeholder i. e. student.

With sincere gratitude, I acknowledge the constant support and guidance extended by Shri Samir Somaiya, President- Somaiya Vidyavihar, and all the esteemed members of the Governing board and Academic council of the College. I also would like to acknowledge the Heads of the Departments and all the faculty members for their meticulous approach, commitment, and significant contribution towards this endeavour for academic excellence.

Dr. Pradnya Prabhu Principal





# Acknowledgement

Syllabus Revision is an essential part of academic sustenance. This year, with the implementation of NEP 2O2O, we now have the added responsibility of delivering a curriculum that focuses on both- a sound knowledge base along with higher order skills that will support all round development and vocation of the learner. At the outset, I would like to thank our Principal Dr. Pradnya Prabhu for her guidance and support during the curriculum restructuring process. I am also deeply obliged to all the esteemed members of the Board of Studies, for their constructive suggestions and contributions.

Above all, I am indebted to my young and vibrant colleagues in the Department of Physics for their sincere and painstaking efforts during the compilation of the restructured syllabus as per NEP 2O2O guidelines.

Dr. Deepak More Chairperson Board of Studies in Physics





# Table of Contents

| Sr. No. | Contents                                                                                                                              | Page number |
|---------|---------------------------------------------------------------------------------------------------------------------------------------|-------------|
|         | Preamble                                                                                                                              | OI          |
| 1       | Introduction                                                                                                                          | 03          |
| 2       | <ul> <li>2 Learning outcome-based approach to Curriculum</li> <li>Planning</li> <li>2.1 Nature and extent of M.Sc. Physics</li> </ul> |             |
|         | 2.2 Programme Education Objectives (PEOs)                                                                                             |             |
| 3       | Postgraduate attributes in Physics                                                                                                    | 07          |
| 4       | Qualification descriptors                                                                                                             | 08          |
| 5       | Programme Specific Outcomes (PSOs)<br>5.1 Course Mapping                                                                              | IO          |
| 6       | Structure of M.Sc. Physics Programme<br>6.1 Course Content<br>6.2 Credit distribution<br>6.3 Semester Schedule                        | 13          |
| 7       | Detailed M.Sc. Physics Syllabus<br>M.Sc I Physics                                                                                     | 23          |
| 8       | Teaching Learning Process                                                                                                             | 95          |
| 9       | Assessment Methods                                                                                                                    | 98          |
| 10      | Programme and Course Code Format                                                                                                      | 98          |





## Preamble

This Learning Outcome-based Curriculum Framework (LOCF) supports the fundamental principle of providing quality education in India. We endeavour to mould young minds to participate, contribute and add value to every milestone in their path towards academic excellence. The introduction of Choice Based Credit System (CBCS) has maximized the benefits of the newly designed curriculum manifold.

The LOCF will assist teachers to envisage the outcome expected from the learners at the end of the programme. It will help them to strategize their teaching effectively. At the same time, this document will guide the students through the new curriculum and help them acquire all the skills and knowledge sets required for their personal and academic growth. Higher education qualifications such as the master's degree Programme are awarded on the basis of demonstrated achievement of outcomes and academic standards; and this is the very essence of this curriculum.

Education is one of the most critical yardsticks in any country's development. The new National Education Policy (NEP) 2O2O is an essential and comprehensive policy framework that aims to revamp the country's educational system from its foundation and to bring it at par with global standards. The larger aim of this policy is to transform the Indian education system by making it more inclusive, flexible, and relevant to the changing needs of the society. Some of the key features of this policy are the introduction of vocational training, elective courses, emphasis on cultural studies, development of global skill sets and the promotion of multilingualism.

The policy seeks to bring about significant changes in the Higher Education structure, such as introducing a four-year undergraduate degree Programme,





establishing multidisciplinary education and research universities, pooled credit banks and creating a National research Foundation to promote and support research activities in various fields. The new education policy enables every student to get quality education irrespective of their socio-economic background, gender, or disability. NEP 2O2O enables teachers to use a variety of learning techniques and experiments.

In the current fast paced world, simply cascading the knowledge in the classroom is not sufficient especially when the global requirements keep changing. Every learner should be encouraged to exchange ideas and thoughts in a collaborative approach. This leads to developing an environment which is cognitive in nature and not a one-way information flow. Keeping all this in mind, the curriculum under Learning Outcome-based Curriculum Framework (LOCF) is designed.





## 1. Introduction

Physics is a science that deals with the nature and effects of matter, energy and their interactions. It's amazing how much physics is used in our daily lives. Without a doubt, physics has benefited the social and economic spheres with a plethora of innovative discoveries. Above all, the application of basic physics principles has greatly aided in the growth of technology. You can pursue a Master's in Physics program if you have taken undergraduate physics courses and want to improve your understanding and career in the discipline.

MSc in Physics is a postgraduate course that concentrates on conceptual and practical aspects of Physics. The course duration is 2-years, and students who have successfully completed this course can find employment in diverse industries in the public or private sector. Usually, the curriculum of an MSc Physics course entails a thorough study of the field of Physics. Students who wish to dig deeper into the enigmatic theories of Physics should apply for the MSc Physics course. Students accepted into this programme will learn about fundamental principles and concepts in physics, such as classical and quantum theories, electronics, optics, and so on.

The M.Sc. Physics programme is developed by keeping in mind the interest of learners to explore and achieve in depth knowledge and skills in the field of Physics. The flexible framework helps to maintain the ethos of Physics degree programmes through periodic programme review within a broad framework of agreed/expected post graduate attributes, qualification descriptors, programme learning outcomes and course-level learning outcomes. The M.Sc. programme is planned in such a way that it allows flexibility and innovation in programme design, syllabi development, teaching-learning process, and quality assessment of student's





learning levels. Updating teaching, learning pedagogy and outcome-based education form the pillars of the programme.

This curriculum framework is developed on the principles of student centric learning pedagogy. The platform intends to empower graduates with the skills required for pursuing wildlife-related careers, higher education in Physics and its allied subjects.

Various graduate attributes are emphasised in this framework such as critical thinking, basic psychology, scientific reasoning, moral ethical reasoning, etc. While designing this framework, an important aspect considered was the measurable teaching-learning outcome to ensure employability of the graduates. Implementation of modern pedagogical tools and concepts such as flip-class, hybrid learning, NPTEL, SWAYAM and other e-learning platforms are suggested through this framework. The framework also focuses on issues relevant to India and of the rest of the world.

Every course is designed in such a way that students get decent exposure to each topic by keeping an equilibrium between these topics and thus creating interest to pursue further education in the field of Physics. It covers the fundamental concepts of Physics to establish a strong foundation of the subject and helps students to explore the subject more.

The practical sessions are designed to help the students gain necessary skills in programming and experimental techniques. Students are also encouraged to improve their scientific writing skills through various assignments. The research-based project work and On-the Job training in the curriculum instills team building





attitude within students and ensures the building of a strong industry interface. The project evaluation method is designed in such a way that it helps in creating a strong background for the research, skills to generate systematic reports and create effective presentation. The Research project or Dissertation helps the students greatly to improve their understanding of the subject and apply their knowledge to the field.

## 2. Learning Outcome based Curriculum Framework

LOCF focuses on curriculum framework, curriculum aims, learning targets and objectives. The curriculum framework also provides examples of effective learning, teaching, and assessment practices. As the curriculum development is a collaborative and an on-going enhancement process, the LOCF instructs periodic reviews and revisions of the curriculum in accordance with the ever-changing needs of students, teachers and society.

The framework describes how students are given exposure towards core knowledge of the subject, specialisation, choice based learning and other skill enhancement courses ensuring development of an integrated personality and employability. The template defines expected outcomes for the programme like core competency, communication skills, critical thinking, affective skills, problem-solving, analytical, reasoning, research-skills, teamwork, digital literacy, moral and ethical awareness, leadership readiness along with specific learning course outcomes at the starting of each course. The Learning Outcomes based Curriculum Framework (LOCF) for M.Sc. Physics will certainly be a valuable document in the arena of outcome-based curriculum design.





#### 2.1 Nature and extent of M.Sc. Physics

The M.Sc. Physics programme is of two years duration. Each year is divided into two semesters. The post graduate program in Physics is designed to include core topics like classical and quantum mechanics. Mathematical Methods, Condensed Matter Physics, Electrodynamics, Atomic and Molecular Physics along with applied branches such as microprocessor and microcontroller programming, scilab, and python. The Physics programme thus strikes a perfect balance between fundamental and advanced concepts.

The curriculum will be taught through formal lectures with the aid of power-point presentations, audio and video tools and other teaching aids can be used as and when required. Wherever possible RBPT approach will be adopted to make the process of learning more learner centric. ICT-based teaching-learning tools will be incorporated through which even the mundane aspects could be made more interesting and relevant.

#### 2.2 Programme Education Objectives (PEOs)

The overall aims of Master's degree program in Physics are to:

1. Familiarize with the basic rules and ideas of physics as well as how they are used in various contexts.

2. Develop teaching and research skills.

3. Gain the ability to organize, carry out, and report on theoretical and/or experimental physics challenges in the future using a productive scientific method.

4. Comprehend scientific data and develop scientific temper.

5. Develop communication skill and teamwork through internship and On Job Training.

6. Accumulate knowledge by continuous activity centred learning and leverage the past knowledge to solve the problems in the future.





## 3. Postgraduate Attributes in Physics

Attributes expected from the graduates of M.Sc. Physics Programme are:

**PGA 1:** Capable of demonstrating good knowledge and understanding of major concepts, theoretical principles and experimental findings in Physics and its different subfields.

**PGA 2:** Ability to transmit complex technical information relating all areas in Physics in a clear and concise manner.

**PGA 3:** Ability to employ critical thinking and efficient problem-solving skills in all the basic areas of Physics.

**PGA 4**: Capability for asking relevant/appropriate questions relating to the issues and problems in the field of Physics, and planning, executing and reporting the results of a theoretical or experimental investigation.

PGA 5: Capable of working effectively in diverse teams in both classroom, laboratory, Physics workshop and in industry and field-based situations.

**PGA 6:** Enthusiasm for working individually and in diverse teams through interdisciplinary projects.

**PGA 7:** Capable of identifying/mobilizing appropriate resources required for a project and manage a project.

**PGA 8:** Capable of using computers for simulation studies in Physics and computation and appropriate software for numerical and statistical analysis of data.

**PGA 9**: Capable of demonstrating ability to think and analyze rationally with modern and scientific outlook and identify ethical issues.

**PGA IO:** Able to develop a national as well as international perspective for their career in the chosen field of the academic activities.





## 4. Qualification descriptors

Upon successful completion of the programme, students receive a master's degree in physics. M.Sc. Physics graduates of this department acquire knowledge pertaining to various core and applied branches under Physics along with the development of Practical skills in their specialisation. The postgraduates are expected to demonstrate the extensive knowledge of various concepts in Physics and their applications. The postgraduates are thus able to contribute to research and development, Academia, Government, and public sectors. This programme will establish a solid foundation for the student to pursue further studies in Physics such as Doctoral work or field-based research in the subject.

# The list below provides a synoptic overview of possible career paths provided by post graduate training in Physics:

- I. Academics
- 2. Research
- 3. Defence
- 4. Information Technology
- 5. Space Research Centers
- 6. Health Physics
- 7. Forensic science department
- 8. Oil and gas sectors
- 9. Packaging industry
- 10. Geophysics and meteorology
- II. Energy sector
- 12. Telecommunications
- 13. Environmental monitoring and analysis
- 14. Sound Engineering





#### Job Roles for M.Sc. Physics graduate:

After graduation one can seek a professional career as:

- 1. Research Assistants
- 2. Academician
- 3. Radiologist
- 4. Laboratory Technician
- 5. System Analyst
- 6. Data Analyst
- 7. Accelerator operator
- 8. Laser Engineer
- 9. Web developer
- 10. Astronomer
- 11. Meteorologist
- 12. Aerospace systems engineer

#### Higher Education options for M.Sc. Physics postgraduate:

- 1. PhD in their respective specializations
- 2. BEd





## 5. Programme Specific Outcomes (PSOs)

After the successful completion of modules in different courses of M.Sc. Physics, the learner will be able to:

**PSO I.** Comprehend algebraic concepts and advanced mathematical tools involved in the interpretation of various physical properties of materials.

**PSO II.** Appreciate the principles of Electrodynamics and their applications in daily life.

**PSO III**. Develop essential logical and analytical skills to approach a problem both quantitatively and qualitatively.

**PSO IV.** Gain knowledge and the skills to measure some of the properties of solid materials and understand the underlying principles governing the dynamics of rigid bodies.

**PSO V.** Acquire scientific temper leading to critical thinking and research motivation in Physics and its allied areas.

PSO VI. Design and develop coding to provide solutions for real life problems.





# 5.1 Course Mapping

| Semester | PSO    | I | II | III          | IV           | V | VI           |
|----------|--------|---|----|--------------|--------------|---|--------------|
|          | Course |   |    |              |              |   |              |
| I        | MJ I   |   |    |              |              |   |              |
|          | MJ II  |   |    | $\checkmark$ |              |   |              |
|          | MJ III |   |    |              |              |   |              |
|          | MJ IV  |   |    |              | V            |   |              |
|          | DSE1   |   |    | $\checkmark$ |              |   | $\checkmark$ |
|          | DSE2   |   |    |              |              |   | $\checkmark$ |
|          | DSE3   | V |    |              |              |   |              |
|          | RM     |   |    | $\checkmark$ |              |   |              |
| II       | MJ I   |   |    |              | $\checkmark$ |   |              |
|          | MJ II  |   |    | $\checkmark$ | $\checkmark$ |   |              |
|          | MJ III |   |    |              |              |   |              |
|          | MJ IV  |   |    |              |              |   |              |
|          | DSE1   |   |    |              |              |   |              |
|          | DSE2   |   |    |              |              |   |              |
|          | DSE3   |   |    |              | $\checkmark$ |   |              |
|          | OJT    |   |    |              |              |   |              |
| III      | MJ I   |   |    |              | $\checkmark$ |   |              |
|          | MJ II  |   |    |              |              |   |              |
|          | MJ III |   |    |              |              |   |              |
|          | MJ IV  |   |    |              |              |   |              |
|          | DSE1   |   |    | $\checkmark$ |              |   | $\checkmark$ |
|          | DSE2   |   |    | $\checkmark$ |              |   | $\checkmark$ |
|          | DSE3   |   |    | $\checkmark$ |              |   | $\checkmark$ |





K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

| IV | MJ I       |              |              | <br>         |  |
|----|------------|--------------|--------------|--------------|--|
|    | MJ II      | V            | V            |              |  |
|    | MJ III     | V            | V            |              |  |
|    | MJ IV      | V            | V            |              |  |
|    | Internship | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |





## 6. Structure of M.Sc. Physics programme

The programme consists of two years (two semesters per year). The syllabus is drafted such that all significant theoretical subjects are covered in the initial three semesters with an emphasis on on-the-job training and research project/ internship/ apprenticeship work in industry or certified laboratories.

| Sem | Major | DSE | RM/OJT/ RIA | Total |
|-----|-------|-----|-------------|-------|
| 1   | 14    | 4   | RM 4        | 22    |
| 2   | 14    | 4   | OJT 4       | 22    |
| 3   | 16    | 6   |             | 22    |
| 4   | 8     |     | 14          | 22    |

• In semester I, the learner will have four major core courses on General Physics, one discipline specific elective and one common minor course on Research Methodology.

• In Semester II, the learner will have four major core courses on Advanced Physics, one discipline specific elective and will have to engage in an on-the-job training for 21 days.

• In Semester III the subject specialisation begins, the learner has four courses in core physics and two discipline specific elective courses.

• In Semester IV the learner has four courses in core physics and will have to complete one long Research Project and submit a dissertation at the end of the semester.

• Dissertation should be appreciable, original and of good quality. Assessment of dissertation will be based on an open viva for defence.





#### 1. Major Core Courses (MJ):

- a) A course which is required to be opted by a candidate as a major core course. The course designed under this category aims to cover the basics that a student is expected to imbibe in that subject or discipline.
- b) There are sixteen Major Core courses (MJ), four each, in semesters I II, III and IV
- c) Each Major Core Courses is compulsory.
- d) Each Major Core Course consists of 2 credits for theory and 1.5 credits for practical in semester 1 and 11 and 2 credits for theory and 2 credits for practical in semester III and IV.
- e) The purpose of fixing major core papers is to ensure that the institution follows a minimum common curriculum to adhere to common minimum standards with other universities/institutions.

#### 2. Discipline Specific Elective (DSE):

- a) A course is chosen by the candidate from the same stream as an elective out of the three courses offered. Elective course helps the student to gain a broader understanding of the specialization in the major discipline.
- b) There is one DSE course each in semester I, II and two in semester III. The credits assigned are 2 credits for theory ie. 30 hours; 2 lectures of 1 hr each per week and 2 credits for practical of four hours per week in semester 1 and 2. In semester 3, there are 2 credits for theory per course and 1 credit each for the practical.





#### 3. Research Methodology (RM)

- a) This is a mandatory course to all post graduate students.
- b) Students are required to achieve understanding of the various nuances of research, how to formulate a research problem, plan the work and execute it effectively. Scientific writing and other skills relevant to research are taught here.
- c) This course carries 4 credits (60 hours in class teaching)
- 4. On Job Training (OJT)
  - a) On Job training or Internships are introduced as per the guidelines of the National Education Policy (NEP) 2O2O, which emphasizes the importance of research and internships in undergraduate education. The internships will be mandatory for students in three-year and four-year degree programs, with a duration of 6O to 12O hours.
  - b) This seeks to equip students with the ability to gain relevant soft skills such as teamwork, problem-solving, work ethics, adaptability, communication, and time management.
  - c) This training carries 4 credits. 1 credit corresponds to 30 hours of engagement.

#### 5. Internship (INT):

a) One of the fundamental principles guiding the development of our education system as per NEP 2O2O is the fostering of 'outstanding research as a corequisite for outstanding education and development'. with this perspective Research project / Dissertation is a mandatory component of the master's program





- b) Here the learner is assigned a research problem related to their field of specialization either within the department or at a premier institute of the country. The learner must complete their research and present their dissertation at the end of the period.
- c) Internship is introduced in semester IV of M.Sc course, having 14 credits. 1 credit of internship corresponds to 30 hours of engagement in a semester.

| Sr.<br>No | Semester | Course<br>number | Course Code                      | Course title               |
|-----------|----------|------------------|----------------------------------|----------------------------|
| 1         | I        | MJ I             | 23PSIPHMJIMTM                    | Mathematical Methods       |
| 2         |          | MJ II            | 23PSIPHMJ2CLMI                   | Classical Mechanics-I      |
| 3         |          | MJ III           | 23PSIPHMJ3QM1                    | Quantum Mechanics-I        |
| 4         |          | MJ IV            | 23PSIPHMJ4CMP                    | Condensed Matter Physics   |
| 5         |          | MJ P             | 23PSIPHMJPI                      | Practicals based on each   |
|           |          |                  | 23PSIPHMJP2                      | Major Course-              |
|           |          |                  |                                  | [MJ 1+MJ II=P1,            |
|           |          |                  |                                  | MJ III+MJ IV=P2]           |
| 6         |          | DSE1             | 23PSIPHDSEMIP                    | 8086 Microprocessors       |
| 7         |          | DSE2             | 23PSIPHDSESCL                    | Scilab                     |
| 8         |          | DSE3             | 23PSIPHDSEMSI                    | Material Science-I         |
| 9         |          | DSEP             | 23PSIPHDSEMIPP<br>23PSIPHDSESCLP | Practical based on the DSE |

## 6.1 Course Content



**Somanya** TRUST

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

|    |     |        | 23PSIPHDSEMSILP                                    | course                                                                            |
|----|-----|--------|----------------------------------------------------|-----------------------------------------------------------------------------------|
| 10 |     | RM     | 24PSIPHRMG                                         | Research Publication and<br>Ethics                                                |
| 11 | II  | MJ I   | 23PS2PHMJIAEL                                      | Applied Electronics                                                               |
| 12 |     | MJ II  | 23PS2PHMJ2CED                                      | Classical Electrodynamics                                                         |
| 13 |     | MJ III | 23PS2PHMJ3QM2                                      | Quantum Mechanics-II                                                              |
| 14 |     | MJ IV  | 23PS2PHMJ4AMP                                      | Atomic and Molecular<br>Physics                                                   |
| 15 |     | MJ P   | 23PS2PHMJP1<br>23PS2PHMJP2                         | Practicals based on each<br>Major Course-<br>[ MJ I+MJ II=PI,<br>MJ III+MJ IV=P2] |
| 16 |     | DSE I  | 23PS2PHDSEMIC                                      | 8051 Microcontroller                                                              |
| 17 |     | DSE 2  | 23PS2PHDSEPYP                                      | Python Programming                                                                |
| 18 |     | DSE 3  | 23PS2PHDSEMS2                                      | Material Science -II                                                              |
| 19 |     | DSE P  | 23PS2PHDSEMICP<br>23PS2PHDSEPYPP<br>23PS2PHDSEMS2P | Practicals based on each DSE course                                               |
| 20 |     | OJT    | 23PS2PHOJT                                         | On Job Training                                                                   |
| 21 | 111 | MJ I   | 24PS3PHMJISTMI                                     | Statistical Mechanics I                                                           |
| 22 |     | MJ II  | 24PS3PHMJ2NPHI                                     | Nuclear Physics-1                                                                 |



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



| 23 |    | MJ III  | 24PS3PHMJ3EXPI | Experimental Physics I           |
|----|----|---------|----------------|----------------------------------|
| 24 |    | MJ IV   | 24PS3PHMJ4CLM2 | Classical Mechanics II           |
| 25 |    | MJ P    | 24PS3PHMJP1    | Practicals based on each         |
|    |    |         | 24PS3PHMJP2    | Major Course-                    |
|    |    |         |                | [ MJ I+MJ II=P1,                 |
|    |    |         |                | MJ III+MJ IV=P2]                 |
| 26 |    | DSE 1   | 24PS3PHDSEPIC  | PIC Microcontroller              |
| 27 |    | DSE 2   | 24PS3PHDSECPP  | C++ programming                  |
| 28 |    | DSE 3   | 24PS3PHDSEAPR  | 32- bit ARM Processor            |
| 29 |    | DSE P   | 24PS3PHDSEPICP | Practicals based on the DSE      |
|    |    |         | 24PS3PHDSECPPP | course                           |
|    |    |         | 24PS3PHDSEAPRP |                                  |
| 30 | IV | MJ I    | 24PS4PHMJISTM2 | Statistical Mechanics 2          |
| 31 |    | MJ II   | 24PS4PHMJ2NPH2 | Nuclear Physics II               |
| 32 |    | MJ III  | 24PS4PHMJ3EXP2 | Experimental Physics II          |
| 33 |    | MJ IV   | 24PS4PHMJ4AMM  | Advanced Mathematical<br>Methods |
| 34 |    | RP/INT/ | 24PS4PHRIA     | Research Project/Internship/     |
|    |    | А       |                | Apprenticeship                   |





# 6.2 Credit distribution for M.Sc. Physics

| Semester | Course | Course title                       |        | Credits   |       |
|----------|--------|------------------------------------|--------|-----------|-------|
|          | number |                                    | Theory | Practical | Total |
| I        | MJ I   | Mathematical Methods               | 2      | 1.5       | 3.5   |
|          | MJ II  | Classical Mechanics-I              | 2      | 1.5       | 3.5   |
|          | MJ III | Quantum Mechanics-I                | 2      | 1.5       | 3.5   |
|          | MJ IV  | Condensed Matter Physics           | 2      | 1.5       | 3.5   |
|          | DSE    | Student will choose any one DSE    | 2      | 2         | 4     |
|          | RM     | Research Publication and<br>Ethics | 4      | _         | 4     |
|          |        | Total                              | I      | L         | 22    |
| II       | MJ I   | Applied Electronics                | 2      | 1.5       | 3.5   |
|          | MJ II  | Classical Electrodynamics          | 2      | 1.5       | 3.5   |
|          | MJ III | Quantum Mechanics-II               | 2      | 1.5       | 3.5   |
|          | MJ IV  | Atomic and Molecular<br>Physics    | 2      | 1.5       | 3.5   |
|          | DSE    | Student will choose one<br>DSE     | 2      | 2         | 4     |
|          | OJT    | On Job Training                    | 4      | -         | 4     |



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



|     |        | Total                                              |    |   | 22 |
|-----|--------|----------------------------------------------------|----|---|----|
| 111 | MJ I   | Statistical Mechanics I                            | 2  | 2 | 4  |
|     | MJ II  | Nuclear Physics I                                  | 2  | 2 | 4  |
|     | MJ III | Experimental Physics I                             | 2  | 2 | 4  |
|     | MJ IV  | Classical Mechanics II                             | 2  | 2 | 4  |
|     | DSEI   | Student will choose one<br>DSE                     | 2  | I | 3  |
|     | DSEII  | Student will choose one<br>DSE                     | 2  | I | 3  |
|     |        | Total                                              |    |   | 22 |
| IV  | MJ I   | Statistical Mechanics II                           | 2  | - | 2  |
|     | MJ II  | Nuclear Physics II                                 | 2  | _ | 2  |
|     | MJ III | Experimental Physics II                            | 2  | _ | 2  |
|     | MJ IV  | Advanced Mathematical<br>Methods                   | 2  | - | 2  |
|     | RIA    | Research Project/<br>Internship/<br>Apprenticeship | 14 | _ | 14 |
|     |        | Total                                              |    |   | 22 |





# 6.3 Semester Schedule

| Semester | Major Core Courses (MJ)             | DSE<br>[Any one per<br>semester] | RM/OJT/ Internship<br>CC |
|----------|-------------------------------------|----------------------------------|--------------------------|
| I        | I] Mathematical Methods             | 1]8086                           | Research Publication     |
|          | 2] Classical Mechanics-1            | Microprocessors                  | and Ethics               |
|          | 3]Quantum Mechanics-1               | 2]Scilab                         |                          |
|          | 4] Condensed Matter                 | 3]Material Science-I             |                          |
|          | Physics                             |                                  |                          |
|          |                                     |                                  |                          |
| II       | 1] Applied Electronics              | 1]8051                           | OJT                      |
|          | 2] Electrodynamics                  | Microcontroller                  |                          |
|          | 3]Quantum Mechanics-11              | 2]Python                         |                          |
|          | 4] Atomic and Molecular             | Programming                      |                          |
|          | Physics                             | 3]Material Science-II            |                          |
| III      | 1] Statistical Mechanics I          | 1] PIC                           | -                        |
|          | 2] Nuclear Physics                  | Microcontroller                  |                          |
|          | 3] Experimental Physics I           | 2] C++ programming               |                          |
|          | 4] Classical Mechanics II           | 3] 32- bit ARM<br>Processor      |                          |
| IV       | I] Statistical Mechanics II         |                                  | Research Internship      |
|          | 2] Nuclear Physics II               |                                  |                          |
|          | 3] Experimental Physics II          |                                  |                          |
|          | 4] Advanced Mathematical<br>Methods |                                  |                          |





#### 6.4 Course Learning Objectives

The two-year postgraduate Physics programme is designed to familiarize students with in-depth knowledge of Physics. The objective of structured syllabus in Physics is to make the concepts and basics of Physics clear and interesting to students and to ensure the development of vertical growth in the subject. The idea behind this is to enable students to develop analytical skills and critical thinking.

It is our attempt that students achieve this objective through systematic reading and class lectures and through feedback on their written work-assignments, project/research papers, presentations, discussions, debates, etc. our intention is to enable students to formulate cogent arguments, presenting the necessary evidence to establish these, based on a training in Physics.





# 7. Detailed M.Sc. Physics Syllabus

## M.Sc. Syllabus with effect from the Academic year 2023-2024

## Syllabus - M.Sc I Physics

| Course<br>No. | Course                         | Course             | Credits     | <b>Periods</b> | Module | Lectures<br>per<br>module<br>(1 hr) | Examination       |                   |                |
|---------------|--------------------------------|--------------------|-------------|----------------|--------|-------------------------------------|-------------------|-------------------|----------------|
| INO.          | Title                          | Code               |             | (1 Hr)         |        |                                     | Internal<br>Marks | External<br>Marks | Total<br>Marks |
| SEMES         | TER I                          |                    |             |                |        |                                     |                   |                   |                |
| Core C        | Course Theo                    | ry                 |             |                |        |                                     |                   |                   |                |
| I             | Mathematic<br>al Methods       | 23psiphmj<br>imtm  | 2           | 30             | 2      | 15                                  | 20                | 30                | 50             |
| II            | Classical<br>Mechanics -1      | 23PSIPHMJ<br>2CLMI | 2           | 30             | 2      | 15                                  | 20                | 30                | 50             |
|               | Quantum<br>Mechanics-I         | 23PSIPHMJ<br>3QMI  | 2           | 30             | 2      | 15                                  | 20                | 30                | 50             |
| IV            | Condensed<br>Matter<br>Physics | 23PSIPHMJ<br>4CMP  | 2           | 30             | 2      | 15                                  | 20                | 30                | 50             |
| Core C        | Course Pract                   | ical               |             |                |        |                                     |                   |                   |                |
| I             | Practical I                    | 23PSIPHMJ<br>PI    | 3           | 90             |        |                                     | 25                | 50                | 75             |
| II            | Practical II                   | 23PSIPHMJ<br>P2    | 3           | 90             |        |                                     | 25                | 50                | 75             |
| Discipl       | ine Specific                   | Elective ( Se      | elect any o | ne)            |        |                                     |                   |                   |                |
| I             | 8086<br>Microproces<br>sors    | 23PS1PHDS<br>EMIP  | 2           | 30             | 2      | 15                                  | 20                | 30                | 50             |
| II            | Scilab                         | 23PSIPHDS<br>ESCL  | 2           | 30             | 2      | 15                                  | 20                | 30                | 50             |
| III           | Material<br>Science-I          | 23PSIPHDS          | 2           | 30             | 2      | 15                                  | 20                | 30                | 50             |



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



|                       | 1                                        |                    | 1       | 1  | 1 |    |     | I  | 1   |
|-----------------------|------------------------------------------|--------------------|---------|----|---|----|-----|----|-----|
|                       |                                          | EMSI               |         |    |   |    |     |    |     |
| Discipli              | ine Specific I                           | Elective Pra       | cticals |    |   |    |     |    |     |
| I                     | Practicals<br>based on<br>Discipline     | 23PSIPHDS<br>EMIPP | 2       | 60 |   |    | 20  | 30 | 50  |
| II                    | Specific<br>Course                       | 23PSIPHDS<br>ESCLP | 2       | 60 |   |    | 20  | 30 | 50  |
| III                   |                                          | 23PSIPHDS<br>EMSIP | 2       | 60 |   |    | 20  | 30 | 50  |
| OJT/Re                | esearch Proje                            | ects/Interns       | hip     |    |   |    |     |    |     |
| I                     | Research<br>Publication<br>and<br>Ethics | 24psiphr<br>Mg     | 4       | 60 | 4 | 15 | 100 |    | 100 |
| SEMESTER II           |                                          |                    |         |    |   |    |     |    |     |
| Core C                | Course Theor                             | ry                 |         |    |   |    |     |    |     |
| I                     | Applied<br>Electronics                   | 23PS2PHMJ<br>IAEL  | 2       | 30 | 2 | 15 | 20  | 30 | 50  |
| II                    | Classical<br>Electrodyna<br>mics         | 23PS2PHMJ<br>2CED  | 2       | 30 | 2 | 15 | 20  | 30 | 50  |
| 111                   | Quantum<br>Mechanics-II                  | 23PS2PHMJ<br>3QM2  | 2       | 30 | 2 | 15 | 20  | 30 | 50  |
| IV                    | Atomic &<br>molecular<br>Physics         | 23PS2PHMJ<br>4AMP  | 2       | 30 | 2 | 15 | 20  | 30 | 50  |
| Core Course Practical |                                          |                    |         |    |   |    |     |    |     |
| Core C                | ourse Practi                             |                    |         |    |   |    |     |    |     |
| Core C                | Practical I                              | 24PS2PHM<br>JPI    | 3       | 90 |   |    | 25  | 50 | 75  |



K J Somarya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



| Discipline Specific Elective (Select any one) |                                         |                    |   |     |   |    |     |    |     |
|-----------------------------------------------|-----------------------------------------|--------------------|---|-----|---|----|-----|----|-----|
| I                                             | 8051<br>Microcontro<br>Iler             | 23PS2PHDS<br>EMIC  | 2 | 30  | 2 | 15 | 20  | 30 | 50  |
| II                                            | Python<br>Programmin<br>g               | 23PS2PHDS<br>EPYP  | 2 | 30  | 2 | 15 | 20  | 30 | 50  |
| III                                           | Material<br>Science-II                  | 23PS2PHDS<br>EMS2  | 2 | 30  | 2 | 15 | 20  | 30 | 50  |
| Discipl                                       | Discipline Specific Elective Practicals |                    |   |     |   |    |     |    |     |
| I                                             | Practicals<br>based on<br>discipline    | 23PS2PHDS<br>EMICP | 2 | 60  |   |    | 20  | 30 | 50  |
| II                                            | specific<br>course                      | 23PS2PHDS<br>EPYPP | 2 | 60  |   |    | 20  | 30 | 50  |
| 111                                           |                                         | 23PS2PHDS<br>EMS2P | 2 | 60  |   |    | 20  | 30 | 50  |
| OJT/R                                         | OJT/Research Projects/Internship        |                    |   |     |   |    |     |    |     |
| I                                             | OJT                                     | 24PSIPHOJ<br>T     | 4 | 120 |   |    | 100 |    | 100 |





#### MSc PHYSICS SEMESTER I

#### Core Course- I COURSE TITLE: Mathematical Methods COURSE CODE: 23PSIPHMJIMTM [CREDITS - 02]

## Course Learning Outcomes

| <ul><li>After the successful completion of the Course, the learner will be able to -</li><li>1. Describe applications of Complex variable</li><li>2. Apply Complex integrals</li></ul> |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                                                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                        |  |  |  |  |  |  |  |
| 4. Explain Tensor analysis.                                                                                                                                                            |  |  |  |  |  |  |  |
|                                                                                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                        |  |  |  |  |  |  |  |
| in                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Learning Outcomes                                                                                                                                                                      |  |  |  |  |  |  |  |
| After the successful completion of the module, the learner will be able to -                                                                                                           |  |  |  |  |  |  |  |
| <ol> <li>Analyze complex variables and their applications.</li> <li>Calculate complex integral.</li> </ol>                                                                             |  |  |  |  |  |  |  |
|                                                                                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                        |  |  |  |  |  |  |  |



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



| 1.2          | Elementary functions: Exponential and Trigonometric,<br>Taylor and Laurent series, Solution of differential equation<br>using power series Frobenius method, Residues, Residue<br>theorem, Principal part of the functions, Residues at poles,<br>zeroes and poles of order m                                                                                                                 | 6L    |  |  |  |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|
| 1.3          | Contour Integrals, Evaluation of improper real integrals,<br>improper integral involving Sines and Cosines, Definite<br>integrals involving sine and cosine functions.                                                                                                                                                                                                                        | 5L    |  |  |  |  |  |  |
| Module 2     | Special Functions and Tensor Analysis                                                                                                                                                                                                                                                                                                                                                         | [15L] |  |  |  |  |  |  |
| Learning O   | bjectives                                                                                                                                                                                                                                                                                                                                                                                     |       |  |  |  |  |  |  |
| The module   | e is intended to -                                                                                                                                                                                                                                                                                                                                                                            |       |  |  |  |  |  |  |
|              | <ol> <li>Understand the concept of Special functions</li> <li>Understand Tensor Analysis</li> </ol>                                                                                                                                                                                                                                                                                           |       |  |  |  |  |  |  |
| Learning O   | utcomes                                                                                                                                                                                                                                                                                                                                                                                       |       |  |  |  |  |  |  |
| After the su | accessful completion of the module, the learner will be able to -                                                                                                                                                                                                                                                                                                                             |       |  |  |  |  |  |  |
| 1.<br>2.     | Evaluate Special Functions.<br>Perform Tensor Analysis                                                                                                                                                                                                                                                                                                                                        |       |  |  |  |  |  |  |
| 2.1          | Legendre functions: Legendre polynomials, Rodrigue's<br>formula; generating function and recursion relations;<br>Orthogonality and normalization; associated Legendre<br>function, special harmonics. Bessel functions: Bessel functions<br>of the first kind,<br>recursion relations and orthogonality. Hermite functions:<br>Hermite polynomials, generating function, recursion relations; | 7L    |  |  |  |  |  |  |



Somanyan TRUST

| K J Somaiya College of Science & Commerce       |
|-------------------------------------------------|
| Autonomous (Affiliated to University of Mumbai) |

|     | Orthogonality.                                                                                                                                                                                                                                                                 |    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.2 | Laguerre functions: Laguerre & associated Lauguerre<br>polynomials, recursion relations, Orthogonality. Tensor<br>Analysis: Introduction to Tensor Analysis, Addition and<br>Subtraction of Tensors, summation convention, Contraction,<br>Direct Product, Levi-Civita Symbol. | 8L |

#### References:

- Mathematical Physics, H.K.Dass, S.Chand and Company Ltd., 2010.
- Mathematical Methods for Physicists, G. Arfken: Mathematical Methods for Physicists, Academic Press Academic Press.
- Schaum's Outline of Complex Variables, 2<sup>nd</sup> edition
- Mathematical Methods for Physicists (4th edition):
- George Arfken& Hans J. Weber, Academic Press, San Diego (1995).
- Mathematical Methods in Physical Sciences (2<sup>nd</sup> edition): Mary L. Boas, John Wiley & Sons, New York (1983).
- Mathematical Physics: P. K. Chattopadhyay, Wiley Eastern Ltd., New Delhi (1990).
- Introduction to Mathematical Physics: Charlie Harper, Prentice Hall of India Pvt. Ltd., New Delhi (1995).
- Mathematical Methods for Physicists (4<sup>th</sup> edition): George Arfken& Hans J. Weber, Academic Press, San Diego (1995).
- Mathematical Methods in Physical Sciences (2<sup>nd</sup> edition): Mary L. Boas, John Wiley & Sons, New York (1983)
- Matrices and Tensors in Physics (3rd edition): A.W.Joshi, New Age International (P) Ltd. Publishers, New Delhi (2000).





# Question paper Template MSc PHYSICS SEMESTER I Core Course- I COURSE TITLE: Mathematical Methods COURSE CODE: 23PSIPHMJIMTM [CREDITS - O2]

| Module                   | Remembering/<br>Knowledge | Understanding | Applying | Analysing | Evaluatin<br>g | Creating | Total<br>marks |
|--------------------------|---------------------------|---------------|----------|-----------|----------------|----------|----------------|
| I                        | -                         | -             | 10       | 10        | 5              | -        | 25             |
| II                       | -                         | -             | 10       | 10        | 5              | -        | 25             |
| Total marks per question | -                         | -             | 20       | 20        | 10             | -        | 50             |
| %<br>Weightage           | -                         | -             | 40       | 40        | 20             | -        | 100            |





## MSc PHYSICS SEMESTER I Core Course- II COURSE TITLE: Classical Mechanics -1 COURSE CODE: 23PSIPHMJ2CLM1 [CREDITS - O2]

## **Course Learning Outcomes**

After the successful completion of the Course, the learner will be able to -

- 1. Establish new mechanics to overcome the difficulties in applying Newtonian Mechanics.
- 2. Introduce the concept of Lagrangian and Hamiltonian mechanics.
- 3. Learn to compare coordinate transformation amongst all the above mechanics.

| Module I     | Lagrangian Dynamics & Calculus of Variations                      | [15L]      |
|--------------|-------------------------------------------------------------------|------------|
| Learning Ot  | ojectives                                                         |            |
| The module   | e is intended to -                                                |            |
| 1.           | Introduce the concepts of Hamiltonian and Lagrangian mechar       | nics       |
| 2.           | Familiarize learner with the calculus of variations.              |            |
| Learning Ou  | ıtcomes                                                           |            |
| After the su | accessful completion of the module, the learner will be able to - |            |
| 1.           | Apply the calculus of variations to Physics problems, Apply I     | Lagrangian |
|              | dynamics to Physics problems                                      |            |
| 2.           | Establish connection between ignorable coordinates and            | l laws of  |
|              | conservations.                                                    |            |
| 1.1          | Hamilton's principle, Calculus of variations, Derivation of       | 6L         |
|              |                                                                   |            |





| r            |                                                                           | 1         |
|--------------|---------------------------------------------------------------------------|-----------|
|              | Lagrange's equations from Hamilton's principle                            |           |
| 1.2          | Lagrange Multipliers and constraint extremization Problems,               | 5L        |
|              | Extension of Hamilton's principle to nonholonomic systems                 |           |
| 1.3          | Advantages of a variational principle formulation, Cyclic                 | 4L        |
|              | coordinates and conservation theorems.                                    |           |
| Module 2     | Hamiltonian Dynamics and Canonical Transformations                        | [15L]     |
| Learning O   | bjectives                                                                 |           |
| The module   | e is intended to -                                                        |           |
| 1.           | Introduce and apply Hamilitonian equations of motion.                     |           |
| 2.           | Introduce the concept of canonical transformations                        |           |
| Learning O   | utcomes                                                                   |           |
| After the su | accessful completion of the module, the learner will be able to -         |           |
| 1.           | Apply canonical transforms to simplify Physics problems                   |           |
| 2.           | Use canonical invariants to determine if a coordinate transform canonical | nation is |
| 2.1          | Derivation of Hamilton's equations from a variational                     | 3L        |
|              | principle.                                                                |           |
| 2.2          | Canonical Transformations, Examples of canonical                          | 7L        |
|              | transformations, The symplectic approach to canonical                     |           |
|              | transformations, Poisson brackets and other canonical                     |           |
|              | invariants                                                                |           |
| 2.3          | Equations of motion, infinitesimal canonical transformations              | 5L        |
|              | and conservation theorems in the Poisson bracket                          |           |
| L            |                                                                           |           |





formulation, The angular momentum Poisson bracket relations.

#### References:

- Classical Mechanics, H. Goldstein, Poole and Safko, 3rd Edition, Narosa Publication
   (2001)
- N. C. Rana and P. S. Joag., Classical Mechanics, Tata McGraw Hill Publication.
- S. N. Biswas, Classical Mechanics, Allied Publishers (Calcutta).
- V. B. Bhatia, Classical Mechanics, Narosa Publishing (1997).
- Landau and Lifshitz, Butterworth, Heinemann, Mechanics.
- R. V. Kamat, The Action Principle in Physics, New Age Intl. (1995).
- E. A. Deslougue, Classical Mechanics, Vol I and II, John Wiley (1982).

Question paper Template MSc PHYSICS SEMESTER I Core Course- II COURSE TITLE: Classical Mechanics -1 COURSE CODE: 23PSIPHMJ2CLMI [CREDITS - 02]

| Module                   | Remembering/<br>Knowledge | Understanding | Applying | Analysing | Evaluatin<br>g | Creating | Total<br>marks |
|--------------------------|---------------------------|---------------|----------|-----------|----------------|----------|----------------|
| I                        | -                         | -             | 10       | 15        | -              | -        | 25             |
| II                       | -                         | -             | 13       | 12        | -              | -        | 25             |
| Total marks per question | -                         | -             | 23       | 27        | -              | -        | 50             |
| %<br>Weightage           | -                         | -             | 46       | 54        | -              | -        | 100            |





## MSc PHYSICS SEMESTER I Core Course- III COURSE TITLE: Quantum Mechanics -1 COURSE CODE: 23PSIPHMJ3QMI [CREDITS - O2]

#### **Course Learning Outcomes**

After the successful completion of the Course, the learner will be able to -

- 1. Discuss basic principles of quantum mechanics and applications.
- 2. Apply commutation relations in uncertainty principles
- 3. Describe the basic applications of quantum mechanics.
- 4. Apply Schrodinger equation in one dimensional potential barrier.

# Module I [15L] Introduction to Quantum Mechanics Learning Objectives The module is intended to -1. Explain the basic principles of quantum mechanics and solution to initial value problem 2. Describe the commutation relationship and its application in uncertainty principle. Learning Outcomes After the successful completion of the module, the learner will be able to -1. Understand basic principles of quantum mechanics and applications. 2. Apply commutation relations in uncertainty principles. 1.1 8L Postulates of QM: Observables and operators; measurements; the state function and expectation values; the time-





| Noui                                                                                | redine Zettili, Quantum Mechanics- Concepts and Applica                                                                                                                                                                                                                                                 | ations, 2nd |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| editi                                                                               | on. 2009. Wiley (NZ)                                                                                                                                                                                                                                                                                    |             |
|                                                                                     | on, 2009, Wiley (NZ)                                                                                                                                                                                                                                                                                    | 5.013       |
| editi<br>Module 2                                                                   | on, 2009, Wiley (NZ)<br>Matrix Formalism                                                                                                                                                                                                                                                                | [15L]       |
|                                                                                     | Matrix Formalism                                                                                                                                                                                                                                                                                        | [15L]       |
| Module 2<br>Learning O                                                              | Matrix Formalism<br>bjectives                                                                                                                                                                                                                                                                           | [15L]       |
| Module 2<br>Learning O                                                              | Matrix Formalism                                                                                                                                                                                                                                                                                        | [15L]       |
| Module 2<br>Learning O                                                              | Matrix Formalism<br>bjectives<br>e is intended to -                                                                                                                                                                                                                                                     | [15L]       |
| Module 2<br>Learning O<br>The module<br>1.                                          | Matrix Formalism<br>bjectives<br>e is intended to -<br>Develop matrix formulation for Quantum Mechanics.                                                                                                                                                                                                | [15L]       |
| Module 2<br>Learning O<br>The module<br>1.<br>2                                     | Matrix Formalism<br>bjectives<br>e is intended to -<br>Develop matrix formulation for Quantum Mechanics.<br>. Explain concept of tunneling in potential barrier.                                                                                                                                        | [15L]       |
| Module 2<br>Learning O<br>The module<br>1.                                          | Matrix Formalism<br>bjectives<br>e is intended to -<br>Develop matrix formulation for Quantum Mechanics.<br>. Explain concept of tunneling in potential barrier.                                                                                                                                        | [15L]       |
| Module 2<br>Learning O<br>The module<br>1.<br>2<br>Learning O                       | Matrix Formalism<br>bjectives<br>e is intended to -<br>Develop matrix formulation for Quantum Mechanics.<br>. Explain concept of tunneling in potential barrier.                                                                                                                                        | [15L]       |
| Module 2<br>Learning O<br>The module<br>1.<br>2<br>Learning O<br>After the su       | Matrix Formalism<br>bjectives<br>e is intended to -<br>Develop matrix formulation for Quantum Mechanics.<br>Explain concept of tunneling in potential barrier.<br>utcomes<br>uccessful completion of the module, the learner will be able to -                                                          | [15L]       |
| Module 2<br>Learning O<br>The module<br>1.<br>2<br>Learning O<br>After the su<br>1. | Matrix Formalism<br>bjectives<br>e is intended to -<br>Develop matrix formulation for Quantum Mechanics.<br>Explain concept of tunneling in potential barrier.<br>utcomes<br>uccessful completion of the module, the learner will be able to -<br>Understand the basic principles of quantum mechanics. |             |
| Module 2<br>Learning O<br>The module<br>1.<br>2<br>Learning O<br>After the su<br>1. | Matrix Formalism<br>bjectives<br>e is intended to -<br>Develop matrix formulation for Quantum Mechanics.<br>Explain concept of tunneling in potential barrier.<br>utcomes<br>uccessful completion of the module, the learner will be able to -                                                          |             |



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



|     | Uncertainty relations between operators, Hermitian operators<br>and their properties. Matrix mechanics: Basis and<br>representations; matrix properties; unitary transformations.<br>Symmetries and conservation laws. Poisson's bracket and<br>commutators |    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.2 | Particle in a box, Harmonic oscillator, Unbound states,                                                                                                                                                                                                     | 5L |
|     | Rectangular potential barrier-tunnelling                                                                                                                                                                                                                    |    |

#### References:

- Richard Liboff, Introductory Quantum Mechanics, 4thed., 2003. (RL)
- DJ Griffiths, Introduction to Quantum Mechanics, 3rd Edition 2018. (DG)
- Nouredine Zettili, Quantum Mechanics- Concepts and Applications, 2nd edition, 2009, Wiley (NZ)

#### Additional References:

- W Greiner, Quantum Mechanics: An Introduction, 4th. ed., 2004.
- R Shankar, Principles of Quantum Mechanics, 2<sup>nd</sup> ed., 1994.
- SN Biswas, Quantum Mechanics, 1998.
- A Ghatak & S Lokanathan, Quantum Mechanics: Theory & Applications. 5<sup>th</sup> ed., 2004.





# Question paper Template MSc PHYSICS SEMESTER I Core Course- III COURSE TITLE: Quantum Mechanics -1 COURSE CODE: 23PSIPHMJ3QMI [CREDITS - O2]

| Module                   | Remembering/<br>Knowledge | Understanding | Applying | Analysing | Evaluatin<br>g | Creating | Total<br>marks |
|--------------------------|---------------------------|---------------|----------|-----------|----------------|----------|----------------|
| I                        | 3                         | 7             | 10       | 5         | -              | -        | 25             |
| II                       | 3                         | 10            | 8        | 4         | -              | -        | 25             |
| Total marks per question | 6                         | 17            | 18       | 9         | -              | -        | 50             |
| %<br>Weightage           | 12                        | 34            | 36       | 18        | -              | -        | 100            |





## MSc PHYSICS SEMESTER I Core Course- IV COURSE TITLE: Condensed Matter physics COURSE CODE: 23PSIPHMJ4CMP [CREDITS - O2]

Course Learning Outcomes

After the successful completion of the Course, the learner will be able to -

- 1. Understand fabrication techniques for p-n junctions and various concepts related to semiconductor devices.
- 2. Explain the crystal structure and several ways of analyzing it and develop theories
- 3. Describe various kinds of magnetism in materials.

| Module I            | Semiconductor Devices | [15L] |
|---------------------|-----------------------|-------|
| Learning Objectives |                       |       |

Learning Objectives

The module is intended to -

- 1. Explain the techniques used for fabrication of p-n junction and its characteristics.
- 2. Explain the metal semiconductor contacts and various properties related to it.

## Learning Outcomes

After the successful completion of the module, the learner will be able to -

- 1. Describe various p-n junction fabrication methods.
- 2. Derive the IV and CV characteristics of a diode.
- 3. Explain metal semiconductor contacts and various concepts related to it.



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



| <ul> <li>implantation; Abrupt and linearly graded junctions; Thermal equilibrium conditions; Depletion regions; Depletion capacitance, Capacitance – voltage (C-V) characteristics, Evaluation of impurity distribution, Ideal and Practical Current- voltage (I-V) characteristics; Tunneling and avalanche reverse junction break down mechanisms; Minority carrier storage, diffusion capacitance. Carrier lifetime measurement by reverse recovery of junction diode. Tunnel diode.</li> <li>Metal – Semiconductor Contacts: Schottky barrier – Energy band relation, Capacitance-voltage (C-V) characteristics, Current-voltage (I-V) characteristics; Ideality factor, Barrier height and carrier concentration measurements; Ohmic contacts functions and expectation values.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                                 |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------|---------------------|
| <ul> <li>equilibrium conditions; Depletion regions; Depletion capacitance, Capacitance - voltage (C-V) characteristics, Evaluation of impurity distribution, Ideal and Practical Current-voltage (I-V) characteristics; Tunneling and avalanche reverse junction break down mechanisms; Minority carrier storage, diffusion capacitance. Carrier lifetime measurement by reverse recovery of junction diode. Tunnel diode.</li> <li>Metal - Semiconductor Contacts: Schottky barrier - Energy band relation, Capacitance-voltage (C-V) characteristics, Current-voltage (I-V) characteristics; Ideality factor, Barrier height and carrier concentration measurements; Ohmic contacts functions and expectation values.</li> <li>References:</li> <li>S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley, New York, 2002.</li> <li>B.C. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw Hill, Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1         | p-n junction: Fabrication of p-n junction by diffusion and ion- | 8L                  |
| <ul> <li>capacitance, Capacitance – voltage (C-V) characteristics,<br/>Evaluation of impurity distribution, Ideal and Practical<br/>Current-<br/>voltage (I-V) characteristics; Tunneling and avalanche reverse<br/>junction break down mechanisms; Minority carrier storage,<br/>diffusion capacitance. Carrier lifetime measurement by<br/>reverse<br/>recovery of junction diode. Tunnel diode.</li> <li>Metal – Semiconductor Contacts: Schottky barrier – Energy<br/>band relation, Capacitance-voltage (C-V) characteristics,<br/>Current-voltage (I-V) characteristics; Ideality factor, Barrier<br/>height and carrier concentration measurements; Ohmic<br/>contacts functions and expectation values.</li> <li>S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John<br/>Wiley, New York, 2002.</li> <li>B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition,<br/>Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw<br/>Hill,Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | implantation; Abrupt and linearly graded junctions; Thermal     |                     |
| <ul> <li>Evaluation of impurity distribution, Ideal and Practical Current-<br/>voltage (I-V) characteristics; Tunneling and avalanche reverse junction break down mechanisms; Minority carrier storage, diffusion capacitance. Carrier lifetime measurement by reverse recovery of junction diode. Tunnel diode.</li> <li>Metal - Semiconductor Contacts: Schottky barrier - Energy band relation, Capacitance-voltage (C-V) characteristics, Current-voltage (I-V) characteristics; Ideality factor, Barrier height and carrier concentration measurements; Ohmic contacts functions and expectation values.</li> <li>S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley, New York, 2002.</li> <li>B.C. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw Hill,Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | equilibrium conditions; Depletion regions; Depletion            |                     |
| Current-voltage (I-V) characteristics; Tunneling and avalanche reverse junction break down mechanisms; Minority carrier storage, diffusion capacitance. Carrier lifetime measurement by reverse recovery of junction diode. Tunnel diode.         1.2       Metal – Semiconductor Contacts: Schottky barrier – Energy band relation, Capacitance-voltage (C-V) characteristics, Current-voltage (I-V) characteristics; Ideality factor, Barrier height and carrier concentration measurements; Ohmic contacts functions and expectation values.       7L         References:       • S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley, New York, 2002.       • B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.         • W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw Hill, Tokyo, 1975.       • Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | capacitance, Capacitance – voltage (C-V) characteristics,       |                     |
| <ul> <li>voltage (I-V) characteristics; Tunneling and avalanche reverse<br/>junction break down mechanisms; Minority carrier storage,<br/>diffusion capacitance. Carrier lifetime measurement by<br/>reverse<br/>recovery of junction diode. Tunnel diode.</li> <li>Metal – Semiconductor Contacts: Schottky barrier – Energy<br/>band relation, Capacitance-voltage (C-V) characteristics,<br/>Current-voltage (I-V) characteristics; Ideality factor, Barrier<br/>height and carrier concentration measurements; Ohmic<br/>contacts functions and expectation values.</li> <li>S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John<br/>Wiley, New York, 2002.</li> <li>B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition,<br/>Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw<br/>Hill, Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | Evaluation of impurity distribution, Ideal and Practical        |                     |
| <ul> <li>junction break down mechanisms; Minority carrier storage,<br/>diffusion capacitance. Carrier lifetime measurement by<br/>reverse<br/>recovery of junction diode. Tunnel diode.</li> <li>Metal – Semiconductor Contacts: Schottky barrier – Energy<br/>band relation, Capacitance-voltage (C-V) characteristics,<br/>Current-voltage (I-V) characteristics; Ideality factor, Barrier<br/>height and carrier concentration measurements; Ohmic<br/>contacts functions and expectation values.</li> <li>S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John<br/>Wiley, New York, 2002.</li> <li>B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition,<br/>Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw<br/>Hill,Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | Current-                                                        |                     |
| <ul> <li>diffusion capacitance. Carrier lifetime measurement by reverse recovery of junction diode. Tunnel diode.</li> <li>Metal – Semiconductor Contacts: Schottky barrier – Energy band relation, Capacitance-voltage (C-V) characteristics, Current-voltage (I-V) characteristics; Ideality factor, Barrier height and carrier concentration measurements; Ohmic contacts functions and expectation values.</li> <li>S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley, New York, 2002.</li> <li>B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw Hill, Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall, Comparison of the second se</li></ul> |             | voltage (I-V) characteristics; Tunneling and avalanche reverse  |                     |
| reverse       recovery of junction diode. Tunnel diode.         I.2       Metal – Semiconductor Contacts: Schottky barrier – Energy<br>band relation, Capacitance-voltage (C-V) characteristics,<br>Current-voltage (I-V) characteristics; Ideality factor, Barrier<br>height and carrier concentration measurements; Ohmic<br>contacts functions and expectation values.       7L         References:       • S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John<br>Wiley, New York, 2002.       • B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition,<br>Prentice Hall of India, NJ, 2000.         • W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw<br>Hill,Tokyo, 1975.       • Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | junction break down mechanisms; Minority carrier storage,       |                     |
| <ul> <li>recovery of junction diode. Tunnel diode.</li> <li>Metal – Semiconductor Contacts: Schottky barrier – Energy<br/>band relation, Capacitance-voltage (C-V) characteristics,<br/>Current-voltage (I-V) characteristics; Ideality factor, Barrier<br/>height and carrier concentration measurements; Ohmic<br/>contacts functions and expectation values.</li> <li>S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John<br/>Wiley, New York, 2002.</li> <li>B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition,<br/>Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw<br/>Hill,Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | diffusion capacitance. Carrier lifetime measurement by          |                     |
| <ul> <li>Metal - Semiconductor Contacts: Schottky barrier - Energy<br/>band relation, Capacitance-voltage (C-V) characteristics,<br/>Current-voltage (I-V) characteristics; Ideality factor, Barrier<br/>height and carrier concentration measurements; Ohmic<br/>contacts functions and expectation values.</li> <li>References: <ul> <li>S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John<br/>Wiley, New York, 2002.</li> <li>B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition,<br/>Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw<br/>Hill,Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | reverse                                                         |                     |
| <ul> <li>band relation, Capacitance-voltage (C-V) characteristics,<br/>Current-voltage (I-V) characteristics; Ideality factor, Barrier<br/>height and carrier concentration measurements; Ohmic<br/>contacts functions and expectation values.</li> <li>References: <ul> <li>S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John<br/>Wiley, New York, 2002.</li> <li>B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition,<br/>Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw<br/>Hill,Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | recovery of junction diode. Tunnel diode.                       |                     |
| <ul> <li>Current-voltage (I-V) characteristics; Ideality factor, Barrier height and carrier concentration measurements; Ohmic contacts functions and expectation values.</li> <li>References: <ul> <li>S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley, New York, 2002.</li> <li>B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw Hill,Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2         | Metal – Semiconductor Contacts: Schottky barrier – Energy       | 7L                  |
| <ul> <li>height and carrier concentration measurements; Ohmic contacts functions and expectation values.</li> <li>References: <ul> <li>S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley, New York, 2002.</li> <li>B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw Hill, Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | band relation, Capacitance-voltage (C-V) characteristics,       |                     |
| <ul> <li>contacts functions and expectation values.</li> <li>References: <ul> <li>S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley, New York, 2002.</li> <li>B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw Hill, Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | Current-voltage (I-V) characteristics; Ideality factor, Barrier |                     |
| <ul> <li>References:</li> <li>S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley, New York, 2002.</li> <li>B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw Hill, Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | height and carrier concentration measurements; Ohmic            |                     |
| <ul> <li>S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley, New York, 2002.</li> <li>B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw Hill, Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | contacts functions and expectation values.                      |                     |
| <ul> <li>Wiley, New York, 2002.</li> <li>B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition,<br/>Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw<br/>Hill,Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | References: |                                                                 | lohn                |
| <ul> <li>B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition,<br/>Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw<br/>Hill, Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                                 | 1, JOHH             |
| <ul> <li>Prentice Hall of India, NJ, 2000.</li> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw Hill, Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                                 | tion                |
| <ul> <li>W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw Hill, Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | ,                                                               | uon,                |
| <ul> <li>Hill, Tokyo, 1975.</li> <li>Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                                                 |                     |
| • Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                                 | i, <i>i</i> vicgraw |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                                 |                     |
| Englewood Cliffs, N.J., 1984.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                 | entice Hall,        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Engle       | ewood Cliffs, N.J., 1984.                                       |                     |



Autonomous (Affiliated to University of Mumbai)



| Module 2     | Crystal Physics and Magnetism                                                                                                                                                                                                                                                                                                                   | [15L] |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Learning Ob  | ojectives                                                                                                                                                                                                                                                                                                                                       |       |
| The module   | e is intended to -                                                                                                                                                                                                                                                                                                                              |       |
| l.<br>2.     | Explain concepts of reciprocal lattices and structure factors.<br>Describe the theory of magnetism.                                                                                                                                                                                                                                             |       |
| Learning Ou  | itcomes                                                                                                                                                                                                                                                                                                                                         |       |
| After the su | ccessful completion of the module, the learner will be able to -                                                                                                                                                                                                                                                                                |       |
| l.<br>2.     | Explain reciprocal lattice and scattering from surfaces.<br>Understand the theory of magnetism and equations related to                                                                                                                                                                                                                         | it.   |
| 2.1          | Reciprocal Lattice and Brillouin Zones. Reciprocal Lattice to<br>sc,<br>bcc, fcc, Scattered wave amplitude, Fourier analysis of the<br>basis;<br>Structure Factor of lattices (sc, bcc, fcc); Atomic Form Factor;<br>Temperature dependence of reflection lines. Elastic scattering<br>from Surfaces; Elastic scattering from amorphous solids. | IOL   |
| 2.2          | Langevin's diamagnetic equation, diamagnetic response,<br>Quantum mechanical formulation, core diamagnetism.<br>Langevin's Theory of Para magnetism, Rare Earth Ions, Hund's<br>Rule.                                                                                                                                                           | 5L    |

• J.Richard Christman "Fundamentals of Solid State Physics" John Wiley & sons





- M.A.Wahab "Solid State Physics –Structure and properties of Materials" Narosa Publications 1999.
- M. Ali Omar "Elementary Solid State Physics" Addison Wesley (LPE)

# Question paper Template MSc PHYSICS SEMESTER I Core Course- IV COURSE TITLE: Condensed Matter physics COURSE CODE: 23PSIPHMJ4CMP [CREDITS - O2]

| Module                   | Remembering/<br>Knowledge | Understanding | Applying | Analysing | Evaluatin<br>g | Creating | Total<br>marks |
|--------------------------|---------------------------|---------------|----------|-----------|----------------|----------|----------------|
| I                        | 5                         | 10            | 10       | -         | -              | -        | 25             |
| II                       | 5                         | 15            | 5        | -         | -              | -        | 25             |
| Total marks per question | 10                        | 25            | 15       | -         | -              | -        | 50             |
| %<br>Weightage           | 20                        | 50            | 30       | -         | -              | -        | 100            |





# MSc PHYSICS SEMESTER I Practical Major Course- I COURSE CODE: 23PSIPHMJPI [CREDITS - O3]

## **Course Learning Outcomes**

After the successful completion of the Course, the learner will be able to:

- 1. Make layout and adjustments of the equipment.
- 2. Record observations and plot graphs.
- 3. Estimate possible errors in the observation of results.
- 4. Design simple experiments
  - 1. Analysis of sodium spectrum
  - 2. h/e by vacuum photocell
  - 3. Absorption spectrum of specific liquids
  - 4. Coupled Oscillations
  - 5. Wavelength of Laser using a millimeter scale as a grating
  - 6. DC Hall effect
  - 7. Temperature dependence of Avalanche and Zener breakdown diodes
  - 8. Carrier lifetime by pulsed reverse method

MINIMUM SIX EXPERIMENTS NEED TO BE DONE AND REPORTED IN JOURNAL





# MSc PHYSICS SEMESTER I Practical Major Course- II COURSE CODE: 23PSIPHMJP2 [CREDITS - 03]

## **Course Learning Outcomes**

After the successful completion of the Course, the learner will be able to:

- 1. Make layout and adjustments of the equipment.
- 2. Record observations and plot graphs.
- 3. Estimate possible errors in the observation of results.
- 4. Design simple experiments
  - 1. Regulated power supply using IC LM 317 as voltage regulator
  - 2. Regulated dual power supply using IC LM 317 & LM 337 voltage regulator
  - 3. Constant current supply using IC 741 and LM 317
  - 4. Active filter circuits (second order)
  - 5. Waveform Generator using ICs
  - 6. Instrumentation amplifier and its applications
  - 7. Study of 8-bit DAC
  - 8. Switching voltage Regulator

## MINIMUM SIX EXPERIMENTS NEED TO BE DONE AND REPORTED IN JOURNAL

#### References:

- Advanced Practical Physics -Worsnop and Flint
- Atomic spectra- H.E. White
- Operational amplifiers and linear Integrated circuits Coughlin & Driscoll
- Op-amps and linear integrated circuit technology- R. Gayakwad
- Semiconductor measurements by Runyan
- Digital principles and applications by Malvino and Leach





# MSc PHYSICS SEMESTER I Discipline Specific Elective Course- I COURSE TITLE: 8086 microprocessors COURSE CODE: 23PSIPHDSEMIP [CREDITS - 02]

## Course learning outcomes

After the successful completion of the Course, the learner will be able to -

- 1. Describe the architecture of 8086 Microprocessor
- 2. Write programs using ALP for 8086 Microprocessor
- 3. Enlist the Instruction set of 8086 Processor
- 4. Explain the Interrupt mechanism of x86
- 5. Interface microprocessor with PPI & Keyboard and Display Controllers

# Module I Introduction to 8086 Microprocessor 15L

#### Learning Objectives

The module is intended to

1. Understand the Architecture, addressing modes and instruction sets of 8086 Microprocessor.

#### Learning Outcomes

After the successful completion of the module, the learner will be able to -

- 1. Understand the block diagram and architecture of 8086
- 2. Explain various instruction sets of 8O86
- 1.1Role of Microprocessor in Micro Computer Brief history of<br/>Microprocessors (with specific insight into x86 family), Features of<br/>8086 Internal Block Diagram of 8086, Execution Unit, Bus8L



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



|                                       | Interface Unit, Addressing Modes Hardware structure of 8086-<br>Pin Configuration, Clock, Processor activities (Interrupt, DMA,<br>etc.), Maximum mode, Instruction cycle Assembly process,<br>Assemblers for x86, Instruction Design            |         |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1.2                                   | Data transfer Instructions, Branch instructions, Arithmetic<br>instructions, Shift and Rotate Instructions, String Instructions,<br>Procedures, Macros, Number Format Conversions, ASCII<br>operations                                           | 7L      |
| Module II                             | Interrupt Mechanism of x86 & Interfacing of Chips                                                                                                                                                                                                | 15L     |
| Learning or<br>After the su<br>1. Und | ain Interfacing with PPI & Keyboard and Display Controllers<br>utcomes<br>uccessful completion of the module, the learner will be able to -<br>erstand interrupts and their types<br>ain interfacing of PPI and Keyboard and Display Controllers |         |
| 2.1                                   | Interrupts of 8086, Dedicated Interrupt types, Software interrupts, Hardware interrupts, Priority of interrupts, Programmable Interrupt Controller (8259) Organization and Interfacing of PPI (8255) and Keyboard and display Interface (8279).  | 15L     |
| References                            | ı<br>:<br>y , K M Bhurchandi, "Advanced Microprocessor & Peripheral:                                                                                                                                                                             | r" Tata |





McGraw Hill,3rd Edition,2013 1.

- Douglas V Hall, "Microprocessor & Interfacing: Programming and Hardware", Tata McGraw Hill, 2nd Edition, 2006.
- Barry B. Brey, "THE INTEL MICROPROCESSORS-Architecture, Programming, and Interfacing", Pearson Education India. Eighth Edition

## Question Paper Template MSc PHYSICS SEMESTER I Discipline Specific Elective Course- I COURSE TITLE: 8086 microprocessors COURSE CODE: 23PSIPHDSEMIP [CREDITS - 02]

| Module                   | Remembering/<br>Knowledge | Understanding | Applying | Analysing | Evaluatin<br>g | Creating | Total<br>marks |
|--------------------------|---------------------------|---------------|----------|-----------|----------------|----------|----------------|
| Ι                        | 5                         | 5             | 5        | -         | -              | -        | 15             |
| II                       | 5                         | 5             | 5        | -         | -              | -        | 15             |
| Total marks per question | 10                        | Ю             | 10       | -         | -              | -        | 30             |
| %<br>Weightage           | 33.3                      | 33.3          | 33.3     | -         | -              | -        | 100            |





# MSc PHYSICS SEMESTER I Discipline Specific Elective Course- II COURSE TITLE: SCILAB COURSE CODE: 23PSIPHDSESCL [CREDITS - O2]

#### Course Learning Outcomes

After the successful completion of the Course, the learner will be able to -

- 1. Understand free simulation software
- 2. Code and simulate Physics equations in second order ODE

#### Module I

**Elements of SciLab** 

15L

#### Learning Objectives

The module is intended to

1. Understand elementary functioning of scilab environment.

#### Learning Outcomes

After the successful completion of the module, the learner will be able to -

1. Program simple physics plotting

| 1.1 | Scilab , a freeware numerical computation software, The general   | 8L |
|-----|-------------------------------------------------------------------|----|
|     | environment and the console, Scilab as an interactive calculator, |    |
|     | Scilab workspace and working directory. Plotting graphs. Simple   |    |
|     | numerical calculations, Variables, assignment and display.        |    |
| 1.2 | Scilab workspace and working directory. Plotting graphs. Simple   | 7L |
|     | numerical calculations, Variables, assignment and display.        |    |



**Somanya** TRUST

| Module II      | ODE Programming                                                                                                                                                 |    |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| Learning of    | ojectives                                                                                                                                                       |    |  |  |  |  |
| The module     | e is intended to -                                                                                                                                              |    |  |  |  |  |
| 1. Let t       | he learner code second order ODE.                                                                                                                               |    |  |  |  |  |
| Learning ou    | itcomes                                                                                                                                                         |    |  |  |  |  |
| After the su   | accessful completion of the module, the learner will be able to -                                                                                               |    |  |  |  |  |
| 1. Code        | e, run and simulate second order Physics equations                                                                                                              |    |  |  |  |  |
| 2.1            | Working with polynomials, Solving ODE using SciLab.                                                                                                             | 7L |  |  |  |  |
| 2.2            | Probability and statistics, Useful SciLab functions, Other application to real Physics Problems.                                                                | 8L |  |  |  |  |
| ente<br>• Prog | b for very beginners Scilab Enterprises Versailles (France) - www<br>rprises.com<br>ramming with SCILAB By Gilberto E. Urroz, Ph.D Distributed<br>ringhouse.com |    |  |  |  |  |

47





# Question Paper Template MSc PHYSICS SEMESTER I Discipline Specific Elective Course- II COURSE TITLE: Scilab COURSE CODE: 23PSIPHDSESCL [CREDITS - O2]

| Module                   | Remembering/<br>Knowledge | Understanding | Applying | Analysing | Evaluatin<br>g | Creating | Total<br>marks |
|--------------------------|---------------------------|---------------|----------|-----------|----------------|----------|----------------|
| I                        | -                         | -             | 10       | 10        | -              | 5        | 25             |
| II                       | -                         | -             | 10       | 10        | -              | 5        | 25             |
| Total marks per question | -                         | -             | 20       | 20        | -              | 10       | 50             |
| %<br>Weightage           | -                         | -             | 40       | 40        | -              | 20       | 100            |





# MSc PHYSICS SEMESTER I Discipline Specific Elective Course- III COURSE TITLE: Material Science-I COURSE CODE: 23PSIPHDSEMSI [CREDITS - O2]

## Course Learning Outcomes

After the successful completion of the Course, the learner will be able to -

- 1. Provide the students with basic knowledge of materials in form of thin films
- 2. Distinguish between thin films based on their structure and properties
- 3. Understand the applications of thin films

#### Module I

Thin Film Deposition and Surface Modification

15L

#### Learning Objectives

The module is intended to

- 1. Provide a comprehensive overview of the latest developments in thin films
- 2. Help students become aware of the various tools available for thin films deposition and characterization
- 3. Develop understanding of various surface modification techniques to improve the surface properties and to evaluate their properties
- 4. Develop skill to select the suitable thin film deposition techniques and surface modification methods for a certain application

#### Learning Outcomes

After the successful completion of the module, the learner will be able to -

1. Get knowledge and understanding of necessity of thin films





- 2. Understand suitable thin film deposition techniques to achieve the required film property
- 3. Gain the understanding about different complementary techniques required for analysing thin films

|                             |                                                                       | ī.  |  |  |
|-----------------------------|-----------------------------------------------------------------------|-----|--|--|
| 1.1                         | Introduction: thick and thin films                                    | 8L  |  |  |
|                             | Film deposition techniques:                                           |     |  |  |
|                             | Physical methods: thermal evaporation, electron beam gun,             |     |  |  |
|                             | sputter deposition of thin films and coatings: DC, RF, magnetron,     |     |  |  |
|                             | ion beam, Molecular beam epitaxy, laser ablation, spin coating        |     |  |  |
|                             | etc.                                                                  |     |  |  |
|                             | Chemical methods: chemical vapour deposition and chemical             |     |  |  |
|                             | solution deposition techniques, spray pyrolysis, ion implantation,    |     |  |  |
|                             | electroplating, electro polishing, plasma enhanced deposition         |     |  |  |
|                             | techniques, atomic layer deposition etc.                              |     |  |  |
| 1.2                         | Thin Film growth: Sequence of thin film growth, Defects and           | 7L  |  |  |
|                             | impurities, Effect of Deposition Parameters on film growth,           |     |  |  |
|                             | Fundamentals of diffusion, inter-diffusion in thin metal films, mass  |     |  |  |
|                             | transport in thin films;                                              |     |  |  |
|                             | Surface modification for thin film by energy beams, plasma, laser:    |     |  |  |
|                             | lithography, Cleaning, sputtering, carburizing, nitriding, cyaniding, |     |  |  |
|                             | Base Coats and Top Coats.                                             |     |  |  |
| Module II                   | Characterization and Application of Thin Films                        | 15L |  |  |
| Learning objectives         |                                                                       |     |  |  |
| The module is intended to - |                                                                       |     |  |  |
|                             |                                                                       |     |  |  |





- 1. Develop skill to select the suitable characterization technique for achieving specific properties of films
  - 2. Understand the complementary techniques of analysing thin films

#### Learning outcomes

After the successful completion of the module, the learner will be able to -

- 1. Acquire the ability to analyse the data obtained from the techniques
- 2. Gain the knowledge about importance of different characterization techniques for studying different properties of films

| 2.1         | Properties of Thin Films and characterization techniques used:         | 9L |
|-------------|------------------------------------------------------------------------|----|
|             | Mechanical: Adhesion, Thickness, Surface morphology, Stylus            |    |
|             | profilometry Chemical: composition, bonding, molecular groups          |    |
|             | etc., XPS - EDX                                                        |    |
|             | Optical: transparency and refractive index, UV-VIS spectroscopy        |    |
|             | Electrical: conductivity / resistivity, impedance, 4-probe method      |    |
|             | Magnetic: para / dia / ortho magnetic nature, NMR                      |    |
|             | spectroscopy                                                           |    |
| 2.2         | Applications of thin film                                              | 6L |
|             | Reflection and anti-reflection coatings, thin film solar cells, strain |    |
|             | gauges and gas sensors, thin film diode and transistor, Magnetic       |    |
|             | films - computer memories, tribological coatings.                      |    |
| References: |                                                                        |    |

- L. I. Maissel and Glang, "Handbook of Thin Film Technology", McGraw Hill Higher Education, 1970.
- J. C. Anderson, "The Use of Thin Films in Physical Investigation", Academic Press



Sometinger TRUST

Inc., 1966.

- R.W. Berry, P.M. Hall and M.T. Harris, "Thin Film Technology", Van Nostrand, 1968.
- Thin Film Phenomenon by K.L. Chopra, McGraw-Hill
- Materials Science of Thin Films by Milton Ohring
- Thin-Film Deposition: Principles and Practice by Donald Smith

## Question Paper Template MSc PHYSICS SEMESTER I Discipline Specific Elective Course- III COURSE TITLE: Material Science -I COURSE CODE: 23PSIPHDSEMSI [CREDITS - O2]

| Module                   | Remembering/<br>Knowledge | Understanding | Applying | Analysing | Evaluatin<br>g | Creating | Total<br>marks |
|--------------------------|---------------------------|---------------|----------|-----------|----------------|----------|----------------|
| I                        | 5                         | 10            | 10       | -         | -              | -        | 25             |
| II                       | 5                         | 10            | 10       | -         | -              | -        | 25             |
| Total marks per question | 10                        | 20            | 20       | -         | -              | -        | 50             |
| %<br>Weightage           | 20                        | 40            | 40       | -         | -              | -        | 80             |





# MSc PHYSICS SEMESTER I Practical Discipline Specific Elective Course-I COURSE CODE: 23PSIPHDSEMIPP [CREDITS - 02]

## Course Learning Outcomes

After the successful completion of the Course, the learner will be able to:

1. Write simple programmes (8086) and execute them

- 1. 8/16-bit addition and subtraction
- 2. Multiplication & Division of 8-bit numbers
- 3. 8/16-bit block transfer
- 4. To find greatest/smallest number from a list of numbers
- 5. To find positive/negative numbers from a list of numbers
- 6. To find odd/even numbers
- 7. To sort the numbers in ascending/descending order
- 8. To find the square root of a number

MINIMUM SIX EXPERIMENTS NEED TO BE DONE AND REPORTED IN JOURNAL

#### **References:**

 A. K.Ray , K M Bhurchandi, "Advanced Microprocessor & Peripherals", Tata McGraw Hill, 3rd Edition, 2013





## MSc PHYSICS SEMESTER I Practical Discipline Specific Elective Course-II COURSE CODE: 23PSIPHDSESCLP [CREDITS - O2]

## **Course Learning Outcomes**

After the successful completion of the Course, the learner will be able to:

1. Write simple programs to simulate physics events and solving second order ODEs

- 1. Write a program to perform basic operations on matrices
- 2. Write a program to generate unit impulse and unit step signals and sequence
- 3. Write a program to find even and odd part of the signal
- To solve the differential equation dy/dx=-x with x(O)=O. y(O)=-2 from x=O to IO with interval =1
- 5. To solve the differential equation using Euler's Method with given initial value condition.
- 6. Determination of Kinetic energy to be imparted to recoil electron using Scilab.
- 7. Determination of barrier tunneling probability.

MINIMUM SIX EXPERIMENTS NEED TO BE DONE AND REPORTED IN JOURNAL

#### **References:**

 Scilab Manual for Basic Simulation Laboratory by Dr Kantipudi Mvv Prasad Sreyas Institute Of Engineering & Technology





## MSc PHYSICS SEMESTER I Practical Discipline Specific Elective Course-III COURSE CODE: 23PS1PHDSEMS1P [CREDITS - 02]

## **Course Learning Outcomes**

After the successful completion of the Course, the learner will be able to:

- 1. Understand the applications of thin films
- 1. Operation of vacuum coating unit.
- 2. Deposition of thin film using vacuum coating unit.
- 3. Grain Size measurement using optical microscope
- 4. Laser Experiments Wavelength and Particle Size Determination
- 5. Refractive index of Material using He-Ne laser.
- 6. Resistivity of Ge sample by van der Pauw method at different temperature and determination of band gap
- 7. Investigating Crystal structure and miller indices of the given XRD Pattern
- 8. Image analysis, finding defects, particle size analysis from SEM images

## MINIMUM SIX EXPERIMENTS NEED TO BE DONE AND REPORTED IN JOURNAL

#### References:

- L. I. Maissel and Glang, "Handbook of Thin Film Technology", McGraw Hill Higher Education, 1970.
- J. C. Anderson, "The Use of Thin Films in Physical Investigation", Academic Press Inc., 1966.
- R.W. Berry, P.M. Hall and M.T. Harris, "Thin Film Technology", Van Nostrand, 1968.
- Thin Film Phenomenon by K.L. Chopra, McGraw-Hill





# MSc PHYSICS SEMESTER I RP/OJT/FP/Internship/Apprenticeship COURSE TITLE: Research Publication and Ethics COURSE CODE: 24PSIPHRMG [CREDITS - O4]

#### Course learning outcomes

After the successful completion of the Course, the learner will be able to -

- 1. Analyse literature and formulate research questions
- 2. Comprehend the relevance of the tools for data collection and analysis
- 3. Compose a research proposal or scientific report
- 4. Understand Research integrity and publication ethics

#### Module I

Overview of Research and it's Methodologies

15L

#### Learning Objectives

The module is intended to

- 1. Explore the basic dimensions of research
- 2. Impart quantitative and qualitative knowledge for conducting meaningful research
- 3. Understand some basic concepts of research and its methodologies

#### Learning Outcomes

After the successful completion of the module, the learner will be able to -

- 1. Review literature and frame research problems
- 1.1 Definition of research, postulate, proposition, Characteristics of 6L





| 1.2                                                                                                                                                 | research, objective of research, nature of research, importance of<br>research, research process, Difference between research method<br>and research process.<br>Introduction to literature review, Need for literature review, | 4L  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| 1.2                                                                                                                                                 | Methodology of literature review .                                                                                                                                                                                              | 4L  |  |  |  |
| 1.3                                                                                                                                                 | Need for the Problem formulation, Criteria for selecting a<br>problem, Identifying variables. Evaluating problems, Reasoning of<br>a<br>hypothesis.                                                                             | 5L  |  |  |  |
| Module II                                                                                                                                           | Data Collection, Analysis and Interpretation                                                                                                                                                                                    | 15L |  |  |  |
| Learning O                                                                                                                                          | ojectives                                                                                                                                                                                                                       |     |  |  |  |
| The module                                                                                                                                          | e is intended to -                                                                                                                                                                                                              |     |  |  |  |
| 1. Ident                                                                                                                                            | cify various methods for conducting research                                                                                                                                                                                    |     |  |  |  |
| 2. Unde                                                                                                                                             | 2. Understand various methods to analyze the data                                                                                                                                                                               |     |  |  |  |
| Learning Outcomes                                                                                                                                   |                                                                                                                                                                                                                                 |     |  |  |  |
| After the su                                                                                                                                        | accessful completion of the module, the learner will be able to -                                                                                                                                                               |     |  |  |  |
| <ol> <li>Design quantitative data collection procedures for a research topic of int</li> <li>Analyze the data by using different methods</li> </ol> |                                                                                                                                                                                                                                 |     |  |  |  |
| 2. Anal                                                                                                                                             |                                                                                                                                                                                                                                 |     |  |  |  |



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



| 2.2              | Inferential statistics: Hypothesis testing, Z test, T test;<br>regression analysis (basic concepts)                                                                                      | 5L |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.3              | <b>2.3</b> Role of simulation, calibration methods, error analysis, and background handling in experimental design.                                                                      |    |
| Module III       | Aodule III Writing Research Proposals and Reports                                                                                                                                        |    |
| Learning Ol      | ojectives                                                                                                                                                                                |    |
| The module       | e is intended to -                                                                                                                                                                       |    |
| 2. Outli         | nd describe sections required in any research proposal /paper<br>ne various practical guidelines for writing research proposal /paper<br>of funding agencies in research                 |    |
| Learning Ou      | utcomes                                                                                                                                                                                  |    |
| After the su     | accessful completion of the module, the learner will be able to -                                                                                                                        |    |
| 1. Deve<br>inter | lop a complete research proposal, appropriate for a research topic<br>est                                                                                                                | of |
| 3.1              | Art of scientific writing: steps to better writing, flow method,<br>organization of material and style, structure and components<br>of research                                          | 4L |
| 3.2              | Types of reports: Research paper, thesis, research project<br>reports, drawing figures, footnotes, tables, references, etc in a<br>research paper, review writing                        | 4L |
| 3.3              | Publication process: selection of journal, citation index, impact<br>factor, h-index, i 10 index indexed and non indexed journals,<br>presenting a paper in a conference, development of | 4L |





|              | communication skills in scientific seminars                          |         |
|--------------|----------------------------------------------------------------------|---------|
| 3.4          | Role of funding agencies in research, overview of various funding    | 3L      |
|              | agencies (DST-SERB, UGC, CSIR, BRNS, DRDO), national and             |         |
|              | international research project grants and fellowships                |         |
| Module<br>IV | Scientific Conduct and Publication Ethics                            | 15 L    |
| Learning O   | ojectives                                                            |         |
| The module   | e is intended to -                                                   |         |
| 1. List      | and describe ethical responsibilities of researchers when con        | ducting |
| resea        | arch                                                                 |         |
| 2. Unde      | erstand the Importance of intellectual property rights               |         |
| Learning O   | utcomes                                                              |         |
| After the su | accessful completion of the module, the learner will be able to -    |         |
| 1. Ident     | tify and apply key ethical components while doing research           |         |
| 4.1          | Scientific Conduct: Ethics with respect to science and research,     | 4L      |
|              | Intellectual honesty and research integrity, Plagiarism, Redundant   |         |
|              | publications                                                         |         |
|              | Scientific misconduct: falsification, fabrication, duplication,      |         |
|              | overlapping                                                          |         |
| 4.2          | Publication Ethics: Definition, Best practices, initiatives and      | 6L      |
|              | guidelines, conflicts of interest, Publication misconduct, Violation |         |
|              | of publication ethics, authorship and Contributorship,               |         |
|              | identification of publication misconduct, complaints, appeals,       |         |
|              |                                                                      |         |





|     | predatory publishers and journals                                                                                |    |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| 4.3 | Intellectual Property Right: Basic concepts and types of intellectual property (patent, copyright and trademark) | 5L |  |  |  |  |

References:

- Management Research Methodology, K. N. Krishnaswamy, A. I. Sivakumar, M.
- Mathirajan, 2006, Pearson Education, New Delhi.
- Research Methodology, Methods and Techniques, C. R. Kothari, 2nd edition, 2008,New Age International Publication.
- Research Methodology, A step by step guide for beginners, R. Kumar, 6th edition, 2009, Pearson Education
- Data reduction and error analysis for the physical sciences, P. R. Bevington and D. K. Robinson, 3rd edition, McGraw-Hill
- Intellectual property: Patents, Trademarks, Copyrights, Trade Secrets, C. J. Holland, 2007, Entrepreneur Press
- <u>https://edge.sagepub.com/mertler2e</u>





# MSc PHYSICS SEMESTER II Core Course- I COURSE TITLE: Applied Electronics COURSE CODE: 23PS2PHMJIAEL [CREDITS - O2]

#### **Course Learning Outcomes**

After the successful completion of the Course, the learner will be able to -

- 1. Describe the concept of various circuits used in power electronics.
- 2. Discuss the working and applications of photonic devices.

| Module I            | Photonic Devices                                                                                                                                                  | [15L]      |  |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| Learning Objectives |                                                                                                                                                                   |            |  |  |  |  |
| The module          | e is intended to -                                                                                                                                                |            |  |  |  |  |
| 1.<br>2.            | <ol> <li>Compare different types of Optical Sources and Detectors.</li> <li>Analyse working and characteristics of LEDs, Laser Diodes and Solar cells.</li> </ol> |            |  |  |  |  |
| Learning Ou         | ıtcomes                                                                                                                                                           |            |  |  |  |  |
| After the su        | ccessful completion of the module, the learner will be able to -                                                                                                  |            |  |  |  |  |
| 1.                  | Explain various optical sources and detectors.                                                                                                                    |            |  |  |  |  |
| 2.                  | Describe working principles and characteristics of optical so                                                                                                     | ources and |  |  |  |  |
|                     | detectors.                                                                                                                                                        |            |  |  |  |  |
| 1.1                 | Optical Sources and Detectors: Radiative transitions and                                                                                                          | 5L         |  |  |  |  |
|                     | optical absorption, Coherent and Non- Coherent sources,                                                                                                           |            |  |  |  |  |
|                     | quantum efficiency, modulation capability of optical sources.                                                                                                     |            |  |  |  |  |
|                     | PIN, APD, noise analysis in detectors.                                                                                                                            |            |  |  |  |  |



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



| 1.2                                                                          | LEDs: Working principle and characteristics. Different types of                                                                              |                  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|--|
| 1.2                                                                          | LEDS: working principle and characteristics. Different types of<br>LEDS: homo junction and heterojunction LEDS, surface                      | IOL              |  |  |  |  |  |  |
|                                                                              | emitting and edge emitting LEDs, OLED, white LED. Laser                                                                                      |                  |  |  |  |  |  |  |
|                                                                              | Diodes: Working principle and characteristics. Solar cells                                                                                   |                  |  |  |  |  |  |  |
|                                                                              | working principle and characteristics (as PV devices)                                                                                        |                  |  |  |  |  |  |  |
| References:                                                                  |                                                                                                                                              | I                |  |  |  |  |  |  |
|                                                                              | r, G. Optical Fiber Communications, Mcgraw Hill, Int. Student Ed                                                                             |                  |  |  |  |  |  |  |
|                                                                              | Streetman and S. Banerjee; Solid State Electronic Devices, 5                                                                                 | oth edition,     |  |  |  |  |  |  |
| Prem                                                                         | ice Hall of India, NJ, 2000.                                                                                                                 |                  |  |  |  |  |  |  |
| Module 2                                                                     | Power Electronics                                                                                                                            | [15L]            |  |  |  |  |  |  |
| Learning Ot                                                                  | ojectives                                                                                                                                    |                  |  |  |  |  |  |  |
| The module                                                                   | e is intended to -                                                                                                                           |                  |  |  |  |  |  |  |
| 1.                                                                           | Understand the power electronics system and its applications.                                                                                |                  |  |  |  |  |  |  |
| 2.                                                                           | 2. Analyse working different types of DC-DC converters.                                                                                      |                  |  |  |  |  |  |  |
| 3.                                                                           | Describe applications of DC-Dc converters.                                                                                                   |                  |  |  |  |  |  |  |
| Learning Ou                                                                  | itcomes                                                                                                                                      |                  |  |  |  |  |  |  |
| After the successful completion of the module, the learner will be able to - |                                                                                                                                              |                  |  |  |  |  |  |  |
| After the su                                                                 | ccessful completion of the module, the learner will be able to -                                                                             |                  |  |  |  |  |  |  |
| After the su                                                                 | ccessful completion of the module, the learner will be able to -<br>Describe and distinguish between various power electronics s             | system and       |  |  |  |  |  |  |
|                                                                              |                                                                                                                                              | system and       |  |  |  |  |  |  |
|                                                                              | Describe and distinguish between various power electronics                                                                                   | system and       |  |  |  |  |  |  |
| 1.                                                                           | Describe and distinguish between various power electronics s<br>their components.                                                            | system and<br>5L |  |  |  |  |  |  |
| l.<br>2.                                                                     | Describe and distinguish between various power electronics s<br>their components.<br>Illustrate DC-DC converters and describe their working. |                  |  |  |  |  |  |  |



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



|             | Semiconductor Power Switches: General properties of<br>semiconductor power switches, Power electronic devices such<br>as diode, thyristor, GTO, IGBT and MOSFET. Comparison of<br>semiconductor power switches                                                                                                                                         |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2.2         | DC – DC Converters: Types, Analysis, Control of converters:<br>time ratio and current limit control. Principles of Step up and<br>Step-down Switching Voltage converters. Analysis of buck,<br>boost, buck-boost converters, Cuk converters. Application of<br>DC – DC converters. switch-mode power<br>supplies, uninterruptible power supplies (UPS) |  |  |  |  |  |
| References: |                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |

- Dr. P. S.Bimbhra" Power Electronics" Khanna Publishers 5th edition
- M. D. Singh, K. B. KHanchandani "Power Electronics" Mc Graw Hill 7 Th Reprint 2010
- Alok Jain, Power Electronics and its applications, 2nd Edition, Penram International India.Matrices and Tensors in Physics (3rd edition): A.W.Joshi, New Age International (P) Ltd. Publishers, New Delhi (2000).





# Question paper Template MSc PHYSICS SEMESTER II Core Course- I COURSE TITLE: Applied Electronics COURSE CODE: 23PS2PHMJIAEL [CREDITS - O2]

| Module                   | Remembering/<br>Knowledge | Understanding | Applying | Analysing | Evaluatin<br>g | Creating | Total<br>marks |
|--------------------------|---------------------------|---------------|----------|-----------|----------------|----------|----------------|
| I                        | 3                         | 7             | 7        | 2         | 6              | -        | 25             |
| II                       | 2                         | 15            | 0        | 2         | 6              | -        | 25             |
| Total marks per question | 5                         | 22            | 7        | 4         | 12             | -        | 30             |
| %<br>Weightage           | 10                        | 44            | 14       | 8         | 24             | -        | 100            |

64





## MSc PHYSICS SEMESTER II Core Course- II COURSE TITLE: Classical Electrodynamics COURSE CODE: 23PS2PHMJ2CED [CREDITS - O2]

## Course Learning Outcomes

After the successful completion of the Course, the learner will be able to -

- 1. Apply the concept of electro -magnetic waves to vacuum, matter and waveguides.
- 2. Study retarded potentials and radiation from charged particles

| Module I     | Waves in Conducting Media and Waveguides                               |              |  |  |  |  |
|--------------|------------------------------------------------------------------------|--------------|--|--|--|--|
| Learning Ot  | ojectives                                                              |              |  |  |  |  |
| The module   | The module is intended to -                                            |              |  |  |  |  |
| 1.           | Explain the concept of waves in conducting medium.                     |              |  |  |  |  |
| 2.           | Derive the frequency dependence of various wave properties.            |              |  |  |  |  |
| 3.           | Analyze the propagation of electromagnetic waves through wa            | aveguides    |  |  |  |  |
| Learning Ou  | itcomes                                                                |              |  |  |  |  |
| After the su | ccessful completion of the module, the learner will be able to -       |              |  |  |  |  |
| 1.           | Derive frequency dependence of various wave properties like            | e refractive |  |  |  |  |
|              | index, conductivity and polarizability.                                |              |  |  |  |  |
| 2.           | 2. Describe the propagation of electromagnetic waves through waveguide |              |  |  |  |  |
| 1.1          | Plane waves in conducting media, skin effect and skin depth,           | 8L           |  |  |  |  |
|              |                                                                        |              |  |  |  |  |
| I            |                                                                        |              |  |  |  |  |



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



|                                                                                                                                                              | [15L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Il       Retarded Potentials and Radiation         g Objectives       dule is intended to -         1. Explain the concept of retarded potentials and fields | [15L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| g Objectives                                                                                                                                                 | [15L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| II Retarded Potentials and Radiation                                                                                                                         | [15L]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                              | [15]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Jew/Delhi (1990)                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                              | any Ltd.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| lectromagnetics: B.B. Laud. Wiley Eastern Ltd., Bangalore (1987)                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| V.Greiner, Classical Electrodynamics (Springer-Verlag, 2000) (WG).                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ress                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Classical Electromagnetic Radiation, Heald and Marion, 2nd (1980) Aca                                                                                        | ademic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ntroduction to Electrodynamics, D.J. Griffith, 2nd edition, (Prentice Ha                                                                                     | all)1989.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>ces:</b><br>Classical Electrodynamics, J.D. Jackson, 4th edition, (John Wiley and Sor                                                                     | ns.)2005.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| resonant cavities, introduction to transmission lines.                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| rectangular waveguides, phase velocity and group velocity,                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| planes, waves in hollow conductors, TE and TM waves,                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Wave guides, Propagation of waves between conducting                                                                                                         | 7L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| refractive index.                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| dependence of polarizability, frequency dependence of                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                              | refractive index.<br>Wave guides, Propagation of waves between conducting<br>planes, waves in hollow conductors, TE and TM waves,<br>rectangular waveguides, phase velocity and group velocity,<br>resonant cavities, introduction to transmission lines.<br><b>ces:</b><br>lassical Electrodynamics, J.D. Jackson, 4th edition, (John Wiley and Sor<br>ntroduction to Electrodynamics, D.J. Griffith, 2nd edition, (Prentice Ha<br>lassical Electromagnetic Radiation, Heald and Marion, 2nd (1980) Ac<br>ress<br>V.Greiner, Classical Electrodynamics (Springer- Verlag, 2000) (WG). |



K J Somarya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



|     | 1. Explain the retarded potentials and fields                                                                                                                                                                                             |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     | 2. Derive the expression for power radiated from charges.                                                                                                                                                                                 |  |  |  |  |  |
|     | 3. Summarize the working principle of antennas.                                                                                                                                                                                           |  |  |  |  |  |
| 2.1 | Retarded potentials, The Lienard- Wiechert potentials, Field8Lproduced by charged particle in uniform motion, radiationfrom accelerated charge at low velocities, radiation fromcharged particle with colinear velocity and acceleration. |  |  |  |  |  |
| 2.2 | Antennas, antenna characteristics, Electric dipole radiation, 7L<br>Hertzian Dipole, linear antennas, center tap antenna,<br>Magnetic dipole radiation.                                                                                   |  |  |  |  |  |
|     | c <b>es:</b><br>lassical Electromagnetic Radiation, Heald and Marion, 2nd (1980) AcademicPress<br>V.Greiner, Classical Electrodynamics (Springer- Verlag, 2000) (WG).                                                                     |  |  |  |  |  |





# Question paper Template MSc PHYSICS SEMESTER II Core Course- II COURSE TITLE: Classical Electrodynamics -1 COURSE CODE: 23PS2PHMJ2CED [CREDITS - O2]

| Module                   | Remembering/<br>Knowledge | Understanding | Applying | Analysing | Evaluatin<br>g | Creating | Total<br>marks |
|--------------------------|---------------------------|---------------|----------|-----------|----------------|----------|----------------|
| I                        | 2                         | 13            | 7        | 3         | -              | -        | 25             |
| II                       | 2                         | 12            | 6        | 5         | -              | -        | 25             |
| Total marks per question | 4                         | 25            | 13       | 8         | -              | -        | 50             |
| %<br>Weightage           | 8                         | 50            | 26       | 16        | -              | -        | 100            |

68





# MSc PHYSICS SEMESTER II Core Course- III COURSE TITLE: Quantum Mechanics -II COURSE CODE: 23PS2PHMJ3QM2 [CREDITS - O2]

## **Course Learning Outcomes**

After the successful completion of the Course, the learner will be able to -

- 1. Solve problems in angular momentum and ladder operators, Understands Pauli's spin matrices and their commutations.
- 2. Understands Time dependent and time independent perturbation and its applications

Module I

Angular Momentum

[15L]

# Learning Objectives

The module is intended to -

- 1. Introduce the concepts of ladder operator and Pauli's matrices.
- 2. Familiarize learner with various operations pertaining to spin.

#### Learning Outcomes

After the successful completion of the module, the learner will be able to -

- 1. Perform commutation operations among angular momenta.
- 2. Use Pauli's matrices properties.

| 1.1 | Ladder operators, eigenvalues and eigen functions of L <sup>2</sup> | 4L |
|-----|---------------------------------------------------------------------|----|
|     | and Lz using spherical harmonics                                    |    |



Somanyan TRUST

| K J Somaiya College of Science & Commerce       |  |
|-------------------------------------------------|--|
| Autonomous (Affiliated to University of Mumbai) |  |

| 1.2                                                                        | Addition of angular momentum, Clebsch Gordon coefficients<br>for $j_1=j_2=1/2$ and $j_1=1$ , $j_2=1/2$ , coupled and uncoupled<br>representation of eigenfunctions                                                                                                       | 5L       |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.3                                                                        | Angular momentum matrices; Pauli spin matrices; spin eigen<br>functions; free particle wave functions including spin, addition<br>of two spins                                                                                                                           | 6L       |
| <ul><li>DJ G</li><li>Nour</li></ul>                                        | ard Liboff, Introductory Quantum Mechanics, 4thed., 2003. (RL)<br>riffiths, Introduction to Quantum Mechanics, 3rd Edition 2018. (D<br>redine Zettili, Quantum Mechanics- Concepts and Applica<br>on, 2009, Wiley (NZ)                                                   |          |
|                                                                            |                                                                                                                                                                                                                                                                          |          |
| Module II                                                                  | Perturbation Theory                                                                                                                                                                                                                                                      | [15L]    |
| Module II<br>Learning Ol                                                   |                                                                                                                                                                                                                                                                          | [15L]    |
| Learning O                                                                 |                                                                                                                                                                                                                                                                          | [15L]    |
| Learning O                                                                 | <b>bjectives</b><br>e is intended to -                                                                                                                                                                                                                                   | [15L]    |
| Learning Ol<br>The module<br>1.                                            | <b>bjectives</b><br>e is intended to -                                                                                                                                                                                                                                   | [I5L]    |
| Learning Ol<br>The module<br>1.                                            | bjectives<br>e is intended to -<br>Introduce the concept of Perturbation.<br>. Understand the applications of Perturbation.                                                                                                                                              | [15L]    |
| Learning Ol<br>The module<br>1.<br>2.<br>Learning O                        | bjectives<br>e is intended to -<br>Introduce the concept of Perturbation.<br>. Understand the applications of Perturbation.                                                                                                                                              | [15L]    |
| Learning Ol<br>The module<br>1.<br>2.<br>Learning O                        | bjectives<br>e is intended to -<br>Introduce the concept of Perturbation.<br>. Understand the applications of Perturbation.<br>utcomes<br>uccessful completion of the module, the learner will be able to -<br>Apply time dependent perturbation to Quantum Mechanics Pr | roblems. |
| Learning Ol<br>The module<br>1.<br>2.<br>Learning Ou<br>After the su<br>1. | bjectives<br>e is intended to -<br>Introduce the concept of Perturbation.<br>Understand the applications of Perturbation.<br>utcomes<br>uccessful completion of the module, the learner will be able to -<br>Apply time dependent perturbation to Quantum Mechanics Pr   | roblems. |





|            | theory.                                                                                                                                                                                                                                |                           |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|
| 2.2        | .2 Degenerate perturbation theory - First order energies and secular equation. Time-dependent perturbation theory and applications.                                                                                                    |                           |  |  |  |
| 2.3        | RITZ Variational method                                                                                                                                                                                                                | 3L                        |  |  |  |
| • [<br>• N | Richard Liboff, Introductory Quantum Mechanics, 4thed., 2003. (RL)<br>DJ Griffiths, Introduction to Quantum Mechanics, 3rd Edition 2018. (E<br>Nouredine Zettili, Quantum Mechanics- Concepts and Applica<br>edition, 2009, Wiley (NZ) |                           |  |  |  |
| Additio    | nal References:                                                                                                                                                                                                                        |                           |  |  |  |
| • \        | V Greiner, Quantum Mechanics: An Introduction, 4th. ed., 2004.                                                                                                                                                                         |                           |  |  |  |
| • F        | <ul> <li>R Shankar, Principles of Quantum Mechanics, 2<sup>nd</sup> ed., 1994.</li> </ul>                                                                                                                                              |                           |  |  |  |
| • S        | N Biswas, Quantum Mechanics, 1998.                                                                                                                                                                                                     |                           |  |  |  |
|            | A Ghatak & S Lokanathan, Quantum Mechanics: Theory &Applicatio<br>2004.                                                                                                                                                                | ons. 5 <sup>th</sup> ed., |  |  |  |





# Question paper Template MSc PHYSICS SEMESTER II Core Course- III COURSE TITLE: Quantum Mechanics -II COURSE CODE: 23PS2PHMJ3QM2 [CREDITS - O2]

| Module                   | Remembering/<br>Knowledge | Understanding | Applying | Analysing | Evaluatin<br>g | Creating | Total<br>marks |
|--------------------------|---------------------------|---------------|----------|-----------|----------------|----------|----------------|
| I                        | -                         | 3             | 12       | 10        | -              | -        | 25             |
| II                       | -                         | 8             | 10       | 7         | -              | -        | 25             |
| Total marks per question |                           | 11            | 22       | 17        | -              | -        | 50             |
| %<br>Weightage           | -                         | 22            | 44       | 34        | -              | -        | 100            |





## MSC PHYSICS SEMESTER II Core Course- IV COURSE TITLE: Atomic and Molecular physics COURSE CODE: 23PS2PHMJ4AMP CREDITS - 02]

## **Course Learning Outcomes**

After the successful completion of the Course, the learner will be able to -

- 1. Study the fine structure of the hydrogen atom
- 2. Apply Schrodinger equation to two electron systems
- 3. Acquire the knowledge of various types of couplings in atomic system
- 4. Study the general theory of advanced spectroscopy and spectrometers

## Module I

Atomic Physics

[15L]

#### Learning Objectives

The module is intended to -

- 1. Understand the fine structure of hydrogen atom and apply Schrodinger equation to multi-electron system
- 2. Compare the fine structure spectrum with hyperfine spectrum.
- 3. Study general theory of NMR spectroscopy
- 4. Acquire the knowledge of various types of coupling.

#### Learning Outcomes

After the successful completion of the module, the learner will be able to -

- 1. Evaluate energy splitting under magnetic field
- 2. Analyse hyperfine spectrum and corelate with isotope effect
- 3. Describe principle and working of NMR and IR spectroscopy



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



| 4                                                                | Calculate number of energy levels in various types of couplings                                                                                                                                                                                                                                                   | 5     |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1.1                                                              | (Review: Atomic spectrum, Spectroscopic terms, Quantum<br>numbers, Total angular momentum, The magnetic moment of<br>atom, Lande g factor) Fine structure of hydrogenic atoms -<br>Zeeman effect in strong and weak field, Paschen Back effect                                                                    | 5L    |
| 1.2                                                              | Stark Effect, Nuclear spin and Hyperfine structure, isotope effect, NMR spectroscopy: principle, working, applications                                                                                                                                                                                            | 5L    |
| 1.3                                                              | Term symbols, Selection rules, Exchange symmetry of wave<br>functions, Pauli's exclusion principle, L-S and j-j coupling<br>schemes, allowed terms in the coupling, The central field,<br>ground and excited state of two-electron atoms                                                                          | 5L    |
|                                                                  |                                                                                                                                                                                                                                                                                                                   |       |
| Module II                                                        | Molecular Spectroscopy                                                                                                                                                                                                                                                                                            | [15L] |
| Module II<br>Learning Ol                                         |                                                                                                                                                                                                                                                                                                                   | [15L] |
| Learning O                                                       |                                                                                                                                                                                                                                                                                                                   | [15L] |
| Learning O                                                       | <b>ojectives</b><br>e is intended to -                                                                                                                                                                                                                                                                            | [I5L] |
| Learning Ol<br>The module<br>1.                                  | bjectives<br>e is intended to -                                                                                                                                                                                                                                                                                   |       |
| Learning Ol<br>The module<br>1.                                  | bjectives<br>e is intended to -<br>Explain the theory of electronic spectrum<br>Acquire the knowledge of different molecular rotational and<br>spectrums.                                                                                                                                                         |       |
| Learning Ol<br>The module<br>1.<br>2.<br>3.                      | bjectives<br>e is intended to -<br>Explain the theory of electronic spectrum<br>Acquire the knowledge of different molecular rotational and<br>spectrums.                                                                                                                                                         |       |
| Learning Ol<br>The module<br>1.<br>2.<br>3.                      | <ul> <li>bjectives</li> <li>e is intended to -</li> <li>Explain the theory of electronic spectrum</li> <li>Acquire the knowledge of different molecular rotational and spectrums.</li> <li>Study general theory of Microwave spectroscopy</li> <li>Acquire the knowledge of basics of IR spectroscopy.</li> </ul> |       |
| Learning Ol<br>The module<br>1.<br>2.<br>3.<br>4.<br>Learning Ou | <ul> <li>bjectives</li> <li>e is intended to -</li> <li>Explain the theory of electronic spectrum</li> <li>Acquire the knowledge of different molecular rotational and spectrums.</li> <li>Study general theory of Microwave spectroscopy</li> <li>Acquire the knowledge of basics of IR spectroscopy.</li> </ul> |       |



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



|                                                                                | molecule                                                        |             |  |  |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------|--|--|
| 3.                                                                             | Derive the expression for energy levels of molecular vibr       | ational for |  |  |
|                                                                                | diatomic molecules                                              |             |  |  |
| 4.                                                                             | Summarize the working principle of Microwave spectroscopy       |             |  |  |
| 5.                                                                             | Describe the principle and working of IR spectroscopy           |             |  |  |
| 2.1                                                                            | Electronic Spectroscopy: Molecular orbital approximation        | 4L          |  |  |
|                                                                                | theory, Vibrational and rotational structure of electronic      |             |  |  |
|                                                                                | spectra, example: UV / Visible spectroscopy: principle,working, |             |  |  |
|                                                                                | applications                                                    |             |  |  |
| 2.2                                                                            | Molecular rotational spectroscopy: Classification of molecules: | 6L          |  |  |
|                                                                                | linear, spherical, symmetric and asymmetric tops, rotational    |             |  |  |
|                                                                                | energy levels of rigid and non-rigid diatomic molecules,        |             |  |  |
|                                                                                | isotope effect and intensity of rotational lines, example:      |             |  |  |
|                                                                                | Microwave spectroscopy: principle, working, applications        |             |  |  |
| 2.3                                                                            | Molecular vibrational spectroscopy: Vibration of molecules:     | 5L          |  |  |
|                                                                                | vibrational energy levels of diatomic molecules, simple         |             |  |  |
|                                                                                | harmonic and anharmonic oscillators, diatomic vibrating         |             |  |  |
|                                                                                | rotator and vibrational-rotational spectra. Example: IR         |             |  |  |
|                                                                                | spectroscopy: principle, working, applications                  |             |  |  |
| References:                                                                    |                                                                 |             |  |  |
| • 1. Ro                                                                        | bert Eisberg and Robert Resnick, Quantum physics of Atoms,      | Molecules,  |  |  |
| Solid                                                                          | s, Nuclei and Particles, John Wiley & Sons, 2nd ed, (ER)        |             |  |  |
| • B.H.                                                                         | Bransden and G. J. Joachain, Physics of atoms and molecule      | es, Pearson |  |  |
| Educ                                                                           | ation 2nd ed, 2004 (BJ)                                         |             |  |  |
| • C. N. Banwell, Fundamentals of molecular spectroscopy, Tata McGraw-Hill, 3rd |                                                                 |             |  |  |



**Somewa** 

## ed

- G. K. Woodgate, Elementary Atomic Structure, Oxford university press, 2nd ed, (GW).
- G. Aruldhas, Molecular structure and spectroscopy, Prentice Hall of India 2nd ed, 2002 (GA)
- Ira N. Levine, Quantum Chemistry, Pearson Education, 5th edition, 2003 (IL) Publications 1999.
- M. Ali Omar "Elementary Solid State Physics" Addison Wesley (LPE)

## Question paper Template MSc PHYSICS SEMESTER II Core Course- IV COURSE TITLE: Atomic and Molecular physics COURSE CODE: 23PS2PHMJ4AMP [CREDITS - O2]

| Module                   | Remembering/<br>Knowledge | Understanding | Applying | Analysing | Evaluatin<br>g | Creating | Total<br>marks |
|--------------------------|---------------------------|---------------|----------|-----------|----------------|----------|----------------|
| I                        | -                         | 12            | 3        | 5         | 5              | -        | 25             |
| II                       | -                         | 5             | 7        | 13        | -              | -        | 25             |
| Total marks per question | -                         | 17            | 10       | 18        | 5              | -        | 50             |
| %<br>Weightage           | -                         | 34            | 20       | 36        | 10             | -        | 100            |





# MSC PHYSICS SEMESTER II Practical Major Course- I COURSE CODE: 23PS2PHMJPI [CREDITS - 03]

## **Course Learning Outcomes**

After the successful completion of the Course, the learner will be able to:

- 1. Make layout and adjustments of the equipment.
- 2. Record observations and plot graphs.
- 3. Estimate possible errors in the observation of results.
- 4. Design simple experiments
  - 1. Characteristics of a Geiger Muller counter and measurement of dead time
  - 2. Ultrasonic Interferometry- Velocity measurements in different Fluids
  - 3. Double slit- Fraunhofer diffraction (missing order etc.)
  - 4. Barrier capacitance of a junction diode
  - 5. Dielectric constant of liquid
  - 6. Michelson's Interferometer.
  - 7. Double slit- Fraunhofer diffraction (Determination of slit width)
  - 8. Determination of Young's modulus of metal rod by interference method

MINIMUM SIX EXPERIMENTS NEED TO BE DONE AND REPORTED IN JOURNAL





# MSc PHYSICS SEMESTER II Practical Major Course- II COURSE CODE: 23PS2PHMJP2 [CREDITS - 03]

## **Course Learning Outcomes**

After the successful completion of the Course, the learner will be able to:

- 1. Make layout and adjustments of the equipment.
- 2. Record observations and plot graphs.
- 3. Estimate possible errors in the observation of results.
- 4. Design simple experiments
  - 1. Adder-subtractor circuits using ICs
  - 2. Study of Presettable counters 7419O and 74193
  - 3. TTL characteristics of totem pole, open collector and tristate devices
  - 4. Shift registers
  - 5. Interfacing TTL with buzzers, relays, motors and solenoids.
  - 6. Study of sample and hold circuit
  - 7. 16 channel digital multiplexer
  - 8. Temperature on off controller using IC

## MINIMUM SIX EXPERIMENTS NEED TO BE DONE AND REPORTED IN JOURNAL

#### References:

- Experiments in Modern Physics- Mellissions
- Manual of experimental physics -EV-Smith
- Advance practical physics Worsnop and Flint
- Digital principles and applications -Malvino and Leach
- Digital circuits practice R.P. Jain
- Semiconductor measurements by Runyan
- Integrated Circuits K. R. Botkar





# MSC PHYSICS SEMESTER II Discipline Specific Elective Course- I COURSE TITLE: 8051 Microcontroller COURSE CODE: 23PS2PHDSEMIC [CREDITS - 02]

## Course learning outcomes

After the successful completion of the Course, the learner will be able to -

- 1. Develop an in-depth understanding of the operation of microcontrollers.
- 2. Get the knowledge about assembly language programming
- 3. Understand the concept of interrupts and interfacing.
- 4. Acquire the knowledge about the architecture of microcontroller
- 5. Study the programming model of microcontroller
- 6. Write an assembly program for specified applications.

#### Module I

Introduction to 8051

15L

#### Learning Objectives

The module is intended to

- 1. Compare microprocessor and microcontroller
- 2. Understand various types of controllers and their specific applications
- 3. Study architecture of 8051 microcontroller
- 4. Acquire the knowledge about basics of assembly language
- 5. Study various instructions available in 8051 assembly programming
- 6. Understand various addressing modes present in 8051 instructions set





#### Learning Outcomes

After the successful completion of the module, the learner will be able to -

- 1. Differentiate between microprocessor and microcontrollers
- 2. Analyse types of microcontrollers and their suitability for different applications
- 3. Describe in detail pins available, their functions and architecture of 8051 microcontroller
- 4. Understand the concepts of assembly language programming
- 5. List and compare different groups of instructions in 8051 assembly
- 6. Explain different types of addressing modes present in 8051 assembly.

| 1.1                       | Introduction: Difference between microprocessor and microcontroller, types of microcontrollers and architectures, Overview of 8051 family, Applications of Microcontrollers.                                      | 2L  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1.2                       | 8051 Architecture: 8051 pin description, oscillator and clock,<br>Registers, role of PC and DPTR, PSW, Internal Memory<br>Organization, Special function registers, External memory<br>interfacing,               |     |
| 1.3                       | I/O Ports and serial port, timers and counters, Basics of Assembly<br>programming, Addressing Modes, Instruction set, Assembly<br>programs for data management and manipulation in different<br>types of memories | 6L  |
| Module II                 | Programming in 8051                                                                                                                                                                                               | 15L |
| Learning ot<br>The module | <b>ojectives</b><br>e is intended to -                                                                                                                                                                            |     |



Autonomous (Affiliated to University of Mumbai)



- 1. Study jumping and branching instructions in 8051 assembly
- 2. Understand port programming for communication purpose
- 3. Explain data manipulation by using arithmetic and logical instructions
- 4. Acquire the knowledge of timer and counter programming
- 5. Explain the interfacing of 8051 with electrical components

#### Learning outcomes

After the successful completion of the module, the learner will be able to -

- 1. Analyse logic behind different assembly programs and write the efficient one using branching of code
- 2. Describe different types of ports, their special functions and use for communicating with external connected devices
- 3. Evaluate outputs of small codes with arithmetic and logical instructions
- 4. Calculate the time required for the execution of the loop in assembly
- 5. Study the interfacing of electrical and electronic components like LED, keyboard, DC motor etc.

| 2.1 | Assembly Language Programming for 8051: Braching: Jump Loop<br>and Call Instructions, I/O Port Programming, Arithmetical and<br>Logical Instructions, Coding for serial communication     |    |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
| 2.2 | Timer and Interrupt programming: Programming 8051 Timers,<br>Counter Programming, Programming Timer Interrupts,<br>Programming External hardware Interrupts                               | 5L |  |  |
| 2.3 | I/O Interfacing: Interfacing with Light Emitting Diodes (LEDs),<br>Push Buttons, Relays and Latch Connections and Keyboard;<br>Interfacing 7-Segment Displays, LCD, ADC and DAC etc. with | 6L |  |  |

81





89C51 Microcontroller IC. Interfacing and operating DC motor

References:

- Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay, "The 8051 Microcontroller and Embedded Systems", Second Edition, Pearson Prentice Hall.
- Kenneth J. Ayala, "The 8051 microcontroller", Cengage Learning, 2004
- RSG: Microprocessor Architecture, Programming and Applications with the 8085 by Ramesh S. Gaonkar, Fifth Edition Penram International Publication (India)
- AB: Advanced Microprocessors and Peripherals by a K Ray and K M Bhurchandi Second Edition Tata McGraw-Hill Publishing Company ltd.
- Douglas V. Hall, Microprocessors and interfacing, programming and hardware, (TMH)
- Dr. Rajiv Kapadia (Jaico Pub.House) The 8051 Microcontroller & Embedded Systems
- K.J.Ayala, Penram International 8086 Microprocessor: Programming and Interfacing
- Design with PIC microcontrollers by John B. Peatman, Pearson Education Asia.
- Programming & customizing the 8051 microcontroller By Myke Predko, TMH



Somanya. TRUST

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

# Question Paper Template MSc PHYSICS SEMESTER II Discipline Specific Elective Course- I COURSE TITLE: 8051 Microcontroller COURSE CODE: 23PS2PHDSEMIC [CREDITS - 02]

| Module                   | Remembering/<br>Knowledge | Understanding | Applying | Analysing | Evaluatin<br>g | Creating | Total<br>marks |
|--------------------------|---------------------------|---------------|----------|-----------|----------------|----------|----------------|
| I                        | 6                         | 12            | 2        | -         | 5              | -        | 25             |
| II                       | 2                         | 8             | 5        | 2         | 4              | 4        | 25             |
| Total marks per question | 8                         | 20            | 7        | 2         | 9              | 4        | 50             |
| %<br>Weightage           | 16                        | 40            | 14       | 4         | 18             | 8        | 100            |





15L

# MSc PHYSICS SEMESTER II Discipline Specific Elective Course- II COURSE TITLE: Python Programming COURSE CODE: 23PS2PHDSEPYP [CREDITS - O2]

## Course Learning Outcomes

After the successful completion of the Course, the learner will be able to -

- 1. Write Python code , compile, debug and run.
- 2. Apply various data types and control structures in Python programming.
- 3. Construct python conditional and looping statements
- 4. Understand class inheritance and poly

#### **Elements of SciLab**

Learning Objectives

Module I

The module is intended to

- 1. Learn syntax of Python programming language.
- 2. Learn core Python scripting elements such as variables, expression and operators

#### Learning Outcomes

After the successful completion of the module, the learner will be able to -

- 1. Understand basic concepts in python.
- 2. Explore contents of files, directories and text processing with python
- 1.1Introduction to Python, Interpreter v/s compiler Installing3LAnaconda, Python IDEs.



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



| 1.2          | Python simple coding statements, Print statement and print        | 12L |
|--------------|-------------------------------------------------------------------|-----|
|              | formats, Data types and Data structures, Python Operators         |     |
|              | (Mathematical and Logical), Assignment statements, Input Output   |     |
|              | statements.                                                       |     |
| Module II    | Python Programming with Functions and Class                       | 15L |
| Learning ob  | ojectives                                                         |     |
| The module   | e is intended to -                                                |     |
| 1. Learr     | n how to write loops and decision statements in Python.           |     |
| 2. Learr     | n how to write functions and pass arguments in Python             |     |
| Learning ou  | itcomes                                                           |     |
| After the su | accessful completion of the module, the learner will be able to - |     |
| 1. Learr     | n loops and decision statements in Python.                        |     |
| 2. Write     | e functions and pass arguments in Python                          |     |
| 2.1          | Conditional statements, Looping statements.                       | 6L  |
| 2.2          | Python namespaces and scopes, Packages and modules, imports,      | 9L  |
|              | User defined function, Introduction to OOP, Classes, Objects,     |     |
|              | Interfaces, Inheritance.                                          |     |
| References:  |                                                                   |     |
|              | on in easy steps(2018) : Mike McGrath, BPB publications           |     |
| - Duth       | on made simple(2019) : Rydhm Beri, BPB publications               |     |

• Let us Python, 5th Edition(2019) : Yashwant Kanetkar and Aditya Kanetkar, BPB publications





# Question Paper Template MSc PHYSICS SEMESTER II Discipline Specific Elective Course- II COURSE TITLE: Python Programming COURSE CODE: 23PS2PHDSEPYP [CREDITS - O2]

| Module                   | Remembering/<br>Knowledge | Understanding | Applying | Analysing | Evaluatin<br>g | Creating | Total<br>marks |
|--------------------------|---------------------------|---------------|----------|-----------|----------------|----------|----------------|
| I                        | -                         | -             | 5        | 10        | 10             | -        | 25             |
| II                       | -                         | -             | 5        | 10        | 10             | -        | 25             |
| Total marks per question | -                         | -             | 10       | 20        | 20             | -        | 50             |
| %<br>Weightage           | -                         | -             | 20       | 40        | 40             | -        | 100            |





# MSc PHYSICS SEMESTER II Discipline Specific Elective Course- III COURSE TITLE: Material Science-II COURSE CODE: 23PS2PHDSEMS2 [CREDITS - O2]

## Course learning outcomes

After the successful completion of the Course, the learner will be able to -

- 1. Provide an overview of nanomaterials and their synthesis.
- 2. Explains the unique and exceptional properties of nanomaterials as compared to the bulk material.
- 3. Elaborate specific applications of nanotechnology

#### Module I

Nanoscience and Nanomaterials

15L

#### Learning Objectives

The module is intended to

- 1. Introduce the students to the world of nanoscience and provide knowledge of various synthesized and natural nanomaterials
- 2. Give knowledge the properties of nanomaterials which are different from their bulk counterparts

#### Learning Outcomes

After the successful completion of the module, the learner will be able to -

- 1. Familiar with various manufacturing techniques to obtain simple/complex shapes
- 2. Manipulate bulk material to create new nanomaterials for the custom and





| specific applications. Gain the understanding about different complen<br>techniques required for analysing thin films |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |  |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| 1.1                                                                                                                   | Introduction to nanotechnology:<br>Physics of low-dimensional materials, quantum effects, 1D, 2D and<br>3D confinement, Zero-, One-, Two- and Three- dimensional<br>structure, Size control of metal nanoparticles and their properties<br>Nanofabrication:<br>patterning of soft materials by self-organisation and other<br>techniques, chemical self-assembly, artificial multilayers, cluster<br>fabrication etc.                              | 4L |  |
| 1.2                                                                                                                   | Synthesis of Nanomaterials - I:<br>Top down and bottom-up synthesis approach, physical and<br>chemical techniques for nanomaterial synthesis, sol-gel,<br>hydrothermal, freeze drying, mechanical alloying and mechanical<br>milling, ion implantation, Chemical vapour deposition                                                                                                                                                                 | 5L |  |
| 1.3                                                                                                                   | Synthesis of Nanomaterials - II:Fundamentals of nucleation growth, Self-assembly, self-assembled<br>monolayers (SAMs). Langmuir-Blodgett (LB) films, clusters,<br>colloids, emulsion etc.Electrochemical Approaches: anodic oxidation of alumina films,<br>porous silicon, and pulsed electrochemical deposition.Preparation of nanomaterials like gold, silver, different types of<br>nano-oxides, nanotube and wire formation, carbon nanotubes, | 6L |  |
|                                                                                                                       | graphene preparation                                                                                                                                                                                                                                                                                                                                                                                                                               |    |  |



**Somanya** 

| Module II                                                         | Characterization and Application of Nano Materials                                                                                                                                                                                                                                                                                                                                                               | 15L     |  |  |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
| Learning o                                                        | bjectives                                                                                                                                                                                                                                                                                                                                                                                                        |         |  |  |  |
| The modul                                                         | e is intended to -                                                                                                                                                                                                                                                                                                                                                                                               |         |  |  |  |
| 1. Imp                                                            | art basic knowledge on the manufacturing techniques of variou                                                                                                                                                                                                                                                                                                                                                    | s nano- |  |  |  |
| mat                                                               | erials.                                                                                                                                                                                                                                                                                                                                                                                                          |         |  |  |  |
| 2. Mał                                                            | e students aware of the huge potential of nanomateria                                                                                                                                                                                                                                                                                                                                                            | als and |  |  |  |
| nan                                                               | ostructures in engineering and technologies.                                                                                                                                                                                                                                                                                                                                                                     |         |  |  |  |
| Learning o                                                        | utcomes                                                                                                                                                                                                                                                                                                                                                                                                          |         |  |  |  |
| -                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                  |         |  |  |  |
| After the s                                                       | uccessful completion of the module, the learner will be able to -                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
| 1. Imp                                                            | art basic knowledge on the manufacturing techniques of variou                                                                                                                                                                                                                                                                                                                                                    | s nano  |  |  |  |
| mat                                                               | erials.                                                                                                                                                                                                                                                                                                                                                                                                          |         |  |  |  |
| 2. Make students aware of the huge potential of nanomaterials and |                                                                                                                                                                                                                                                                                                                                                                                                                  |         |  |  |  |
| 2. Mał                                                            | e students aware of the huge potential of nanomateria                                                                                                                                                                                                                                                                                                                                                            | als and |  |  |  |
|                                                                   | e students aware of the huge potential of nanomateria<br>ostructures in engineering and technologies.                                                                                                                                                                                                                                                                                                            | als and |  |  |  |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                  | als and |  |  |  |
| nano                                                              | ostructures in engineering and technologies.                                                                                                                                                                                                                                                                                                                                                                     |         |  |  |  |
| nano                                                              | ostructures in engineering and technologies.<br>Characterization of Nanomaterials:                                                                                                                                                                                                                                                                                                                               | 8L      |  |  |  |
| nano                                                              | ostructures in engineering and technologies.<br>Characterization of Nanomaterials:<br>Principle, Theory, Working of characterization techniques-                                                                                                                                                                                                                                                                 | 8L      |  |  |  |
| nano                                                              | Ostructures in engineering and technologies.<br>Characterization of Nanomaterials:<br>Principle, Theory, Working of characterization techniques-<br>X-Ray Diffraction, Scanning Electron Microscopy, Transmission                                                                                                                                                                                                | 8L      |  |  |  |
| nano                                                              | Ostructures in engineering and technologies.<br>Characterization of Nanomaterials:<br>Principle, Theory, Working of characterization techniques-<br>X-Ray Diffraction, Scanning Electron Microscopy, Transmission<br>Electron Microscopy, Field Emission Scanning Electron                                                                                                                                       | 8L      |  |  |  |
| nano                                                              | Ostructures in engineering and technologies.<br>Characterization of Nanomaterials:<br>Principle, Theory, Working of characterization techniques-<br>X-Ray Diffraction, Scanning Electron Microscopy, Transmission<br>Electron Microscopy, Field Emission Scanning Electron<br>Microscopy,                                                                                                                        | 8L      |  |  |  |
| nano                                                              | Ostructures in engineering and technologies.<br>Characterization of Nanomaterials:<br>Principle, Theory, Working of characterization techniques-<br>X-Ray Diffraction, Scanning Electron Microscopy, Transmission<br>Electron Microscopy, Field Emission Scanning Electron<br>Microscopy,<br>Atomic Force Microscopy, Scanning Tunnelling Microscopy,                                                            | 8L      |  |  |  |
| nano                                                              | Ostructures in engineering and technologies.<br>Characterization of Nanomaterials:<br>Principle, Theory, Working of characterization techniques-<br>X-Ray Diffraction, Scanning Electron Microscopy, Transmission<br>Electron Microscopy, Field Emission Scanning Electron<br>Microscopy,<br>Atomic Force Microscopy, Scanning Tunnelling Microscopy,<br>Photoluminescence Spectroscopy, Impedance Spectroscopy, | 8L      |  |  |  |



K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)



nanoelectromechanical systems – sensors, actuators, optical
switches, diodes and nano-wire transistors - data memory lighting
and displays, fuel cells and photo-voltaic cells,
Nano-catalysts, nanostructures for molecular recognition
(quantum dots, nanorods, nanotubes) - Molecular encapsulation
and its applications
Biomedical applications:
Drug delivery system in medical treatment, Targeted chemo -

cancer treatment, tissue regeneration, growth and repair

## References:

- Nanocomposite science and technology, Pulikel M. Ajayan, Wiley-VCH 2005
- Nanolithography and patterning techniques in microelectronics, David G. Bucknall, Wood head publishing 2005
- Transport in Nanostructures, D.K. Ferry and S.M. Goodmick, Cambridge university press 1997.
- Optical properties of solids, F. Wooten, Academic press 1972
- Micro and Nanofabrication, Zheng Cui, Springer 2005
- Nanostructured materials, Jackie Y. Ying, Academic press 2001
- Nanotechnology and nanoelectronics, W.R, Fahrner, Springer 2005
- Nanoengineering of structural, functional and smart materials, Mark J. Schulz, Taylor & Francis 2006.
- S.P. Gaponenko, Optical Properties of semiconductor nanocrystals, Cambridge University Press, 1980.
- W.Gaddand, D.Brenner, S.Lysherski and G.J.Infrate(Eds.), Handbook of Nano Science, Engg. and Technology, CRC Press, 2002.





# Question Paper Template MSc PHYSICS SEMESTER II Discipline Specific Elective Course- III COURSE TITLE: Material Science II COURSE CODE: 23PS2PHDSEMS2 [CREDITS - O2]

| Module                   | Remembering/<br>Knowledge | Understanding | Applying | Analysing | Evaluatin<br>g | Creating | Total<br>marks |
|--------------------------|---------------------------|---------------|----------|-----------|----------------|----------|----------------|
| I                        | 5                         | 10            | 10       | -         | -              | -        | 25             |
| II                       | 5                         | Ю             | 10       | -         | -              | -        | 25             |
| Total marks per question | 10                        | 20            | 20       | -         | -              | -        | 50             |
| %<br>Weightage           | 20                        | 40            | 40       | -         | -              | -        | 100            |





# MSC PHYSICS SEMESTER II Practical Discipline Specific Elective Course-I COURSE CODE: 23PS4PHDSEMICP [CREDITS - 02]

## Course Learning Outcomes

After the successful completion of the Course, the learner will be able to: 1. Write simple programmes (8051) and execute them

- Simple data manipulation programs. (8/16-bit addition, subtraction, multiplication, division, 8/16 bit data transfer, cubes of nos., to rotate a 32- bit number, finding greatest/smallest number from a block of data, decimal / hexadecimal counter)
- 2. Study of IN and OUT port of 8O31/51 by Interfacing switches, LEDs and Relays: to display bit pattern on LED's, to count the number of "ON" switches and display on LED's, to trip a relay depending on the logic condition of switches, event counter (using LDR and light source)
- 3. Study of external interrupts (INTO/INTI) of 8031/51.
- 4. Study of internal timer and counter in 8O31/51.
- Interfacing 8031/8051 based experiments: (Any two experiments from 1, 2 & 3)
   I. Interfacing 8 bit DAC with 8031/51 to generate waveforms: square, saw tooth, triangular.

2. Interfacing stepper motor with 8O31/51: to control direction, speed and number of steps.

3. Interface 8-bit ADC (O8O4) with 8O31/51: to convert an analog signal into its binary equivalent.

FIRST EXPERIMENT IS COMPULSORY AND 2 FROM 2 TO 5.





# MSc PHYSICS SEMESTER II Practical Discipline Specific Elective Course-II COURSE CODE: 23PS2PHDSEPYPP [CREDITS - 02]

## **Course Learning Outcomes**

After the successful completion of the Course, the learner will be able to: 1. Write python code for given problem statements

- 1. Read two integer numbers from the keyboard and print minimum value using ternary operator.
- 2. Program for finding minimum of 3 numbers using nesting of ternary operators.
- 3. Write Python programs to demonstrate the following: i) input() ii) print() iii) 'sep' attribute iv) 'end' attribute v) replacement Operator ({ })
- 4. Python program using functions,
- 5. Python program with class and object.
- 6. Write a Python program to display the sum of first n numbers
- 7. Write a Python program to display the given pattern

MINIMUM SIX EXPERIMENTS NEED TO BE DONE AND REPORTED IN JOURNAL

#### **References:**

• PYTHON PROGRAMMING LAB (AO594193) LAB MANUAL





# MSc PHYSICS SEMESTER II Practical Discipline Specific Elective Course-III COURSE CODE: 23PS2PHDSEMS2P [CREDITS - O2]

## **Course Learning Outcomes**

After the successful completion of the Course, the learner will be able to:

- 1. Provide the students with basic knowledge of materials in form of thin films
- 2. Distinguish between thin films based on their structure and properties
- 2. Understand the applications of thin films
- 1. Determine the size of nanoparticles using spectrophotometer
- 2. Effect of ball milling / grinder time on particle size and surface area of nanoparticles
- 3. Synthesis of Nano-metals (Ag, Au, Cu) and studying its optical properties.
- 4. Studying Antibacterial effect by Ag nanoparticles
- 5. Grain Size measurement using optical microscope
- 6. Fabrication of Nano-Semiconductor or quantum dots (CdS, Si) and determine its

band gap.

7. Strain analysis and Particle size determination by XRD and Phase determination by JCPDS.

MINIMUM SIX EXPERIMENTS NEED TO BE DONE AND REPORTED IN JOURNAL





# 8. Teaching learning process

The pedagogic methods adopted, involve direct lectures, tutorial discussions, as well as technology- supported presentations. We believe that education is interactive and all sessions between students and teachers are based upon reciprocity and respect.

1) The lectures (of 1 hr duration) delivered to one whole class at a time systematically deal with the themes of the syllabus. This constitutes the core of the teaching- learning process. The students are provided with bibliographic references and encouraged to go through at least some readings so that they could be more interactive and ask more relevant questions in the class. This also helps obtain knowledge beyond the boundaries of the syllabi.

2) Wherever needed, teachers use audio-video based technology devices (e. g. power point, YouTube videos) to make their presentations more effective. Some courses require that students see a documentary or feature film and course themes are structured so that discussions of these will further nuance the critical engagement of students with ideas introduced in their textual materials.

3) Remedial coaching, bridge courses are adopted to enhance the scope of learning for the learners. Remedial sessions are conducted to offer assistance on certain advanced topics. Bridge courses facilitate the development of a concrete basis for the topics to be learnt in the coming academic year.

95





# 9. Assessment Methods

## **Evaluation Pattern: Theory**

- Assessments are divided into two parts: Continuous Internal Evaluation (CIE) and Semester End Examination (SEE).
- The CIE is taken at regular intervals in the form of Seminar presentations, MCQ based tests, Research Paper Reading ,Paper Summary writing etc.
- The Semester End Examination shall be conducted by the College at the end of each semester (3OM) Duration: 1.5 hours

| Question No | Module | Marks with Option | Marks without<br>Option |
|-------------|--------|-------------------|-------------------------|
| 1           | I      | 25 M              | 15 M                    |
| 2           | II     | 25 M              | 15 M                    |

Semester End Examination Paper Pattern





## Evaluation pattern: Practical (I and II)

- Continuous Assessment for 25 Marks per practical throughout the entire Semester.
- 50 Marks Sem end Evaluation as per the following rubrics

| Major Core<br>Course | Experiment | Experimental<br>Report | Viva | Total |
|----------------------|------------|------------------------|------|-------|
| PI                   | 40         | 5 M                    | 5 M  | 50 M  |
| P II                 | 40         | 5 M                    | 5 M  | 50 M  |

#### Evaluation pattern: Practical (DSE)

- Continuous Assessment for 20 Marks per practical throughout the entire Semester.
- 30 Marks Sem end Evaluation as per the following rubrics

| Discipline<br>Specific<br>Course | Experiment | Viva | Total |
|----------------------------------|------------|------|-------|
|                                  | 25 M       | 5 M  | 30 M  |





# **10. Programme and Course Code Format**

The course is coded according to following criteria:

- 1. First two numbers in each course code indicates year of implementation of syllabus (23- year of implementation is 2023-24)
- 2. Third letter 'P' designates postgraduate
- Fourth letter 'S' designate Science discipline and the digit followed is for semester number (S1 – 1<sup>st</sup> Semester)
- 4. Letter 'PH' is for Physics discipline (PH-Physics). This forms the programme code 23PSPH. For the further course codes programme code is amended as follows
- 5. To represent Major Core Course (MJ) followed by course number digit (1/2/3/4) and three lettered code representing the title of the course.
- 6. To represent Minor Stream Course (MN) followed by course number digit (1/2/3/4) and three lettered code representing the title of the course.
- 7. For Discipline Specific elective course code, (DSE) alphabets followed by a digit (1/2) followed by three letters specifying the course title are used.
- 8. 'P' followed by digit indicates practical course number. (Practical course number will be added for semesters only where there is more than one course.