

DEPARTMENT OF CHEMISTRY

MASTER OF SCIENCE (M.Sc.): CHEMISTRY

SYLLABUS: 2020-2021

SEMESTER III & IV

Analytical Chemistry (A)

(Specialization)

SEMESTER III

(Analytical Chemistry)

Syllabus summary

Module	Topic	Common with		
Paper I: FO	Paper I: FOOD ANALYSIS			
I	General introduction and preservation of food.	-		
II	Preservation of Food	-		
Ш	Food Quality Standards and Laws	-		
IV	Food Packaging	-		
Paper II: S	ome advanced instrumental techniques			
I	Inductively coupled plasma source	-		
II	Molecular Luminescence - Fluorescence	-		
Ш	Molecular Luminescence - Chemiluminescence	-		
IV	Refractrometry and automated methods of analysis	-		
Paper III: /	Paper III: ADVANCED INSTRUMENTAL TECHNIQUES AND SURFACE CHEMISTRY			
I	Mossbauer and Raman spectroscopy	P/I		
II	ESR and Hyphenated techniques	P/I/O		
III	X-ray spectroscopy and thermal methods	P/I		
IV	Surface Characterization by spectroscopy and microscopy	P/I		
Paper IV:	Paper IV: NANO CHEMISTRY AND SOME IMPORTANT INDUSTRIAL MATERIALS.			
I	Nano Chemistry I	P/I		
II	Nano Chemistry II	P/I		
III	Paints, pesticides and detergents	P/I		
IV	Petrochemical, explosives, glass and alloys	P/I		

Somanya TRUST

Department: Chemistry

M.Sc. Analytical Chemistry Syllabus

M.Sc. – II Analytical Chemistry Semester 3 Course Code –– PSACH3O1 Paper 1: FOOD ANALYSIS

Module	e I: General introduction and Preservation of Food	15 L
1.1	Food chemistry-definition and importance, water in food, water activity	03
	and shelf-life of food. Carbohydrates-chemical reactions, functional	
	properties of sugars and Polysaccharides in foods.	
	Lipids: classification, and use of lipids in foods, physical and chemical	03
	properties, effects of processing on functional properties and nutritive	
	value.	
	Protein and amino acids: physical and chemical properties, distribution,	04
	amount and functions of proteins in foods, functional	
	properties, effect of processingLosses of vitamins and minerals due	
	Pigments in food, food flavours, browning reaction in foods.	O2
	Enzymes in foods, and food industry, bio-deterioration of	03
	foods, food contaminants, additives and toxicants.	
Modul	e II: Preservation of Food	15 L
2.1	Introduction: Historical development of food processing and	03
	preservation, general principles of food preservation.	
	Preservation by heating: Principles of the method, thermal resistance	
	of the microorganisms and enzyme.	
	Microwave heating: Principles and application in food processing.	

Somanya TRUST

Department: Chemistry

2.2	Refrigeration and freezing preservation: Refrigeration and storage of	04
	fresh foods, major requirements of refrigeration plant, controlled	
	atmospheric storage, refrigerated storage of various foods, freezing	
	point of selected food, influence of freezing and freezing rate of the	
	quality of food products, methods of freezing, storage and thawing of	
	frozen foods.	
2.3	Chemical Preservation: Preservation of foods by use of sugar, salt,	04
	chemicals and antibiotics and by smoking.	
	Concentration: Applications in food industry processes and equipment	
	for manufacture of various concentrated foods and their keeping	
	quality.	
2.4	Drying and dehydrations: Sun drying of various foods, water activity	04
	and its effect on the keeping quality, sorption isotherms and their use.	
	Characteristics of food substances related to their dehydration	
	behaviour, drying phenomenon, factors affecting rate of drying,	
	methods of drying of various food products, type of driers and their	
	suitability for different foods; intermediate moisture foods	
Modul	e III: Food Quality Standards and Laws	15 L
3.1	Food quality: Various Quality attributes of food, Quality parameter and	03
	evaluation procedure. Appearance, colour texture, viscosity,	
	consistency flavour defects, bacterial contamination and foreign	
	matter.	
3.2	Introduction to food safety and security: Hygienic design of food	04
	plants and equipment, Food Contaminants (Microbial, Chemical,	
	Physical), Food Adulteration (Common adulterants), Food Additives	
	(functional role, safety issues), Food Packaging & labelling. Sanitation in	
	warehousing, storage, shipping, receiving, containers and packaging	
	materials	

3.3	Quality control for food: Instrumental, chemical and microbial	O5
	Quality control. Sensory evaluation of food and statistical analysis.	
	Water quality and other utilities. Critical Quality control point in	
	different stages of production including raw materials and processing	
	materials. Food Quality and Quality control including the HACCP	
	system.	
	Food adulteration: Definition, common adulteration in different foods,	
	contamination, and methods of detection. Sensory evaluation:	
	Selection of panel of judges, sensory characteristics of foods, types of	
	tests. Naturally occurring food toxins: Gossypol, hemaglutinnins, trypsin	
	inhibitors, lathyrogens etc.	
3.4	Food Laws: International and national food laws, Prevention of food	03
	adulteration Act. Food additives; colouring mater, preservatives,	
	poisonous metals, antioxidants and emulsifying and stabilizing agents,	
	Insecticides. PFA specification for food products.	
Module	e IV: Food Packaging	15 L
Module 4.1	Packaging as a method for conservation and protection of foods.	
	Packaging as a method for conservation and protection of foods.	
	Packaging as a method for conservation and protection of foods. Different packaging materials and their properties- including barrier	
	Packaging as a method for conservation and protection of foods. Different packaging materials and their properties- including barrier properties, strength properties, optical properties etc. Glass,	O7
4.1	Packaging as a method for conservation and protection of foods. Different packaging materials and their properties- including barrier properties, strength properties, optical properties etc. Glass, aluminium, tin, paper, boards, plastics, composites.	O7 O4
4.1	Packaging as a method for conservation and protection of foods. Different packaging materials and their properties- including barrier properties, strength properties, optical properties etc. Glass, aluminium, tin, paper, boards, plastics, composites. Packaging of various food commodities including fresh produce	O7 O4
4.1	Packaging as a method for conservation and protection of foods. Different packaging materials and their properties- including barrier properties, strength properties, optical properties etc. Glass, aluminium, tin, paper, boards, plastics, composites. Packaging of various food commodities including fresh produce (fruits and vegetables), meat, fish, poultry and processed foods.	O7 O4
4.1	Packaging as a method for conservation and protection of foods. Different packaging materials and their properties- including barrier properties, strength properties, optical properties etc. Glass, aluminium, tin, paper, boards, plastics, composites. Packaging of various food commodities including fresh produce (fruits and vegetables), meat, fish, poultry and processed foods. Evaluation of quality and safety of packaging materials -	O7 O4
4.1	Packaging as a method for conservation and protection of foods. Different packaging materials and their properties—including barrier properties, strength properties, optical properties etc. Glass, aluminium, tin, paper, boards, plastics, composites. Packaging of various food commodities including fresh produce (fruits and vegetables), meat, fish, poultry and processed foods. Evaluation of quality and safety of packaging materials—different testing procedures	O7 O4
4.1	Packaging as a method for conservation and protection of foods. Different packaging materials and their properties—including barrier properties, strength properties, optical properties etc. Glass, aluminium, tin, paper, boards, plastics, composites. Packaging of various food commodities including fresh produce (fruits and vegetables), meat, fish, poultry and processed foods. Evaluation of quality and safety of packaging materials—different testing procedures Selection of packaging material and design. Newer—packaging	O7 O4

References

- 1. Beltz, H.D. 2005. Food Chemistry. Springer Verlag.
- 2. Fennema, O.R, 2006, Food Chemistry, Academic Press
- 3. Meyer, L.H. 1987. Food Chemistry. CBS publishers and Distributors, New Delhi.
- 4. Potter, N.N. and Hotchikiss, J.H. (2006), Food Sciences, Fifth edition, CBS publishers and Distributors, New Delhi
- 5. Desrosier NW & James N. (2007). Technology of food preservation. AVI. Publishers
- 6. Fellows, P.J. (2005). Food processing technology: Principle and Practice. 2nd Ed. CRC Publishers
- 7. Jelen, P. (2005). Introduction to Food Processing. Prentice Hall
- 8. N.M.Potter, Food Science and Technology
- 9. Arsdel W.B., Copley, M.J. and Morgen, A.I. 1973. Food Dehydration, 2nd Edn. (2 vol. Set). AVI, Westport
- IO. Bender, A.E. 1978. Food Processing and Nutrition. Academic Press, London. Fellows,P. and Ellis H. 199O. Food Processing Technology: Principles and Practice, New York
- 11. Food Analysis: Theory and practice, YeshajahuPomeranz, Clifton E. Meloan, Springer.
- 12. Principles of package development, Gribbin et al
- 13. Modern packaging Encyclopaedia and planning guide, MacgraWreyco
- 14. Food Analysis, Edited by S. Suzanne Nielsen, Springer
- 15. Analytixcal Biochemistry, D, J. Homes and H. Peck, Longman (1983)
- 16. Bioanalytical Chemistry, S. R. Mikkelesen and E. Corton, John Wiley and sons 2004
- 17. Analysis of food and beverages, George Charalanbous, Accademic press 1978

Somanya.
TRUST

Department: Chemistry

M.Sc. Analytical Chemistry Syllabus

M.Sc. – II Analytical Chemistry Semester 3 Course Code –– PSACH3O2 Paper II: SOME ADVANCED INSTRUMENTAL TECHNIQUES

Mod	dule I: Inductively coupled plasma source	15 L
	Introduction: plasma appearance and spectra, analyte atomisation, ionisation direct current plasma source, plasma source, spectrometers, slew scan spectrometer.	06
	Instruments- spectrographs, multichannel, photoelectric spectrometers, arc source emission spectroscopy, characterisation of arc sources, applications	O5
	Applications: Emission spectroscopy based on arc and sparc source, sample types and sample handling.	04
Mod	dule II: Molecular Luminescence-Fluorescence	15 L
2.1	Fluorescence sensing: Mechanism of sensing; sensing techniques based on i) collisional quenching, (ii) energy transfer, (iii) electron transfer; examples of (i) pH sensors (ii) glucose sensors (iii) protein sensors.	O5
2.2	Novel fluorophores: (i) Quantum dots, (ii) lanthanides and (iii) long-lifetime metallic and complexes.	O5
2.3	Radioactive decay engineering: metal enhanced fluorescence	05
	DNA technology –sequencing.	
Mod	lule III: Molecular Luminescence-Chemiluminescence	15 L
3.1	Chemiluminescence Phenomenon, Measurement, Applications	08
3.2	Photoacoustic spectroscopy, Reflectance spectroscopy	07
Мо	dule IV:	15 L
4.1	Refractometry-ORD,CD	07
4.2	Automated methods of analysis	08

Department: Chemistry M.Sc. Analytical Chemistry Syllabus

References

- 1. Principles of Instrumental Analysis, D. A. Skoog, F. J. Holler and J.A. Niemann, 6th Edition,(2000) Holler and J.A. Niemann, 6th Edition,(2000)
- Instrumental methods of Analysis, H. H. Willard, L. L. Merritt Jr, J. A. Dean and F. A. Settle Jr,7th Ed CBS (1986)
- 3. Introduction to instrumental analysis, R. D. Braun, McGraw Hill (1987)

M.Sc. – II Analytical Chemistry Semester 3 Course Code — PSACH3O3 Paper III: ADVANCED INSTRUMENTAL TECHNIQUES AND SURFACE CHEMISTRY

Modu	le I: Mossbauer and Raman spectroscopy/ nuclear methods	15 L
1.1	Mossbauer's spectroscopy: principle, recoilless emission absorption of gamma rays, experimental methods, instrumentation- drive mechanism, sources, detectors, absorbers effect, calibration of instrument, isomer shift, hyperfine structure (quadruple interactions), magnetic hyperfine interaction, applications, purity and characterization, detection of structurally different atoms in poly nuclear compounds of Iron and Tin	O7
1.2	Raman Spectroscopy: theory of excitation of Raman spectra, mechanism of Raman and Rayleigh scattering, comparison of Raman and Infra-red spectra. Intensity of normal Raman peaks, instrumentation, organic and inorganic applications, surface enhanced Raman spectroscopy, resonant Raman spectroscopy, Non-linear Raman spectroscopy.	O8
Modu	le II: ESR and Hyphenated techniques	15 L
2.1	ESR: principle, instrumentation, spin-spin splitting, qualitative and multiple resonance (ENDOR, ELDOR) spin labelling, metallic complexes, applications.	O7
2.2	Hyphenated techniques: Need for hyphenation, possible hyphenation, interfacing devices and applications of GC-MS, GC-IR, MS-MS, LC-MS, LC-IR, LC-NMR.	O8

Somanya TRUST

Department: Chemistry

Modu	e III:X-ray spectroscopy and thermal methods	15 L
3.1	X-ray spectroscopy: principles instrumentation and applications of	07
	X-ray fluorescence, X-ray absorption and X-ray diffraction spectroscopy.	
2.2		00
3.2	Thermal methods: principle, instrumentation and applications of: differential thermal analysis (DTA), differential scanning calorimetry (DSC), thermometric titrations, thermo mechanical	08
	analysis (TMA), simultaneous thermal analysis (STA), evolved gas	
	analysis (EGA), application in material science.	
Mod	ule IV: Surface Characterization by spectroscopy and	15 L
	oscopy	0.0
4.1	Introduction to study of surfaces, definition of a solid surfaces,	02
	types of surface measurements, general techniques in surface	
	spectroscopy, surface spectroscopic methods, sampling surfaces, surface contaminants.	
4.2.1	X-ray photoelectron spectroscopy (XPS)	02
4.2.2	Auger electron spectroscopy	02
4.2.3	Basic principle, Instrumentation and applications of Electron microprobe, SEM,TEM and AFM	09

Somanyar TRUST

Department: Chemistry

M.Sc. Analytical Chemistry Syllabus

References

- 1. Analytical Chemistry, G. D. Christian, 5th Ed. John Wiley, New York (2000)
- 2. Fundamentals of Analytical Chemistry, D .A. Skoog and D. M. West and F. J. Holler Holt-Saunders 9th Edition (2016)
- 3. Instrumental methods of Analysis, H. H. Willard, L. L. Merritt Jr, J. A. Dean and F. A. Settle Jr, 7th Ed CBS (1986)
- 4. Introduction to instrumental analysis, R. D. Braun, McGraw Hill (1987)
- 5. Wilson and Wilson's Comprehensive Analytical Chemistry, Ed. G. Svehla. (A series of Volumes)
- 6. Treatise on Analytical Chemistry, Eds I. M. Kolthoff and Others, Interscience Pub. (A series of volumes)
- 7. Standard Methods of Chemical Analysis, Eds. F. J. Welcher, Robert E. Krieger Publishing Company, (A series of volumes)
- 8. Spectroscopy by H Kaur, Prgatiprakashan, 2016
- 9. Instrumntal methods of Analysis by Chatwal and Anand, S Chand, 2015
- IO. Nuclear Analytical Chemistry, D. Bane, B. Forkman, B. Persson, Chartwell Bratt Ltd (1984)
- 11. Substoichiometry in Radiochemical Analysis, J. Ruticka and J. Stary, Pargamon
- 12. Radioisotope Techniques, Overman and Clark,, McGraw Hill Book Co. INC New York

M.Sc. – II Analytical Chemistry Semester 3 Course Code — PSACH3O4 Paper IV: NANO CHEMISTRY AND SOME IMPORTANT INDUSTRIAL MATERIALS

Mod	dule I: Nano chemistry 1	15 L
1.1	Introduction, comparison between bulk and nano materials. Types	02
	of nano materials-zero, one, three dimensional nano materials,	
1.2	Synthesis of nano materials: Physical methods, Chemical methods	06
	and biological methods.	
1.3	Properties of nano material with respect to Au, CdSe2,	07
	Silica, PolydimehtylSiloxane-mechanical, structural, melting, electrical,	
	optical and magnetic properties.	
Mod	lule II: Nano chemistry 2	15 L
2.1	Some important nano materials- carbon nanotubes, porous	09
	silicon, mesoporous materials, aerogels, ordered porous	
	materials, self- assembled nano materials and core shell particles.	
2.2	Applications of nano martials in electronics, energy, automobiles,	06
	sports, textiles, cosmetics, domestic appliances, biotechnology,	
	medical fields and space and research. Environmental effects of	
	nanotechnology.	
Mod	dule III: Paints, pesticides and detergents	15 L
3.1	Paints: Introduction, determination of volatile and non-volatile	06
	components, water content of paints, flash point, separation of	
	pigments, binders and thinners of different types, identification	
	and analysis of different types of pigments, organic and inorganic	
	pigments, white tinted and coloured pigments.	

3.2	Pesticides: Introduction, definition, classification, biodegradation	06
	and determination of pesticides. pesticide residue analysis,	
	extraction and cleavage of various type of pesticides, use of	
	instrumental method like GLC, TLC, etc.	
3.3	Detergents: classification, general scheme of analysis, quantitative	03
	method of analysis, active ingredient and equivalent combined SO ₃	
	analysis.	
Mod	lule IV: Petrochemical, explosives, glass and alloys	15L
4.1	Petrochemical analysis: Introduction, definition-fuels, calorific values	04
	of fuel, composition and properties of fuels, analysis of	
	petrochemicals, distillation range, moisture content, flash point, fire	
	point, sulphur and carbon residue, doctor test.	
4.2	Explosives: definition, heat of explosion, qualitative tests for	04
	explosives, quantitative methods for explosive mixtures.	
4.3	Alloys: definition, analysis of copper based alloys, aluminium	03
	and stainless steel.	
4.4	Glass: analysis of different types of glass, soda lime glass, lead glass	04
	and borate glass.	

Somanya TRUST

Department: Chemistry M.Sc. Analytical Chemistry Syllabus

References

- 1. Analytical Chemistry, G. D. Christian, 5th Ed. John Wiley, New York (2000)
- 2. Fundamentals of Analytical Chemistry, D .A. Skoog and D. M. West and F. J. HollerHolt-Saunders 9th Edition (2016)
- 3. Principles of Instrumental Analysis, D. A. Skoog, F. J. Holler and J.A. Niemann, 8th Edition(1998)
- 4. Instrumental methods of Analysis, H. H. Willard, L. L. Merritt Jr, J. A. Dean and F. A. Settle Jr, 7th Ed CBS (1986)
- 5. Introduction to instrumental analysis, R. D. Braun, McGraw Hill (1987)
- 6. Wilson and Wilson's Comprehensive Analytical Chemistry, Ed. G. Svehla. (A series of Volumes)
- 7. Treatise on Analytical Chemistry, Eds I. M. Kolthoff and Others, Interscience Pub. (A series of volumes)
- 8. Standard Methods of Chemical Analysis, Eds. F. J. Welcher, Robert E. Krieger Publishing Company, (A series of volumes)
- 9. Spectroscopy by H Kaur, Prgatiprakashan, 2016.
- 10. Instrumntal methods of Analysis by Chatwal and Anand, S Chand, 2015.
- 11. Concepts of nano chemistry by Cadmitri and others, Wiley publications.
- 12. Nanotechnology by SulbhaKulkarni, CRC press, 4th edition, 2010

M.Sc. Analytical Chemistry Syllabus

PRACTICALS

Semester III Course Code -- PSACHP3O1

- 1) Analysis of milk: Determination of Fe, Ca and P in milk sample.
- 2) Estimation of Lactose in milk powder.
- 3) To determine iodine value and acid value of given oil sample (Castor oil, Coconut oil)
- 4) To determine saponification value of an oil sample.
- 5) Estimation of Vitamin C in lemon juice/lemon squash sample.

Semester III Course Code -- PSACHP3O2

Nuclear Chemistry experiments.

Somety at TRUST

Department: Chemistry

M.Sc. Analytical Chemistry Syllabus

Semester III Course Code -- PSACHP3O3

Project

Semester III Course Code --- PSACHP3O4

- 1) To synthesize CuOnano particles using precipitation/ Sol-Gel method.
- 2) To synthesize and study UV transition spectrum of Ag nano particles.
- 3) Determination of percentage purity of methylene blue dye.
- 4) Analysis of Brass alloy, Zinc blende and Galena for major and minor constituents.
- 5) Cement analysis, Fe, Setting and hardness.

SEMESTER IV

(Analytical Chemistry)

Syllabus summary

Module	Topic	Common with			
PAPER I: F	PAPER I: FORENSIC CHEMISTRY AND TOXICOLOGY				
I	Poisons	-			
II	Isolation and different methods of extraction	-			
III	Introduction to Cosmetics	-			
IV	Analytical Chemistry in Cosmetics	-			
Paper II: I	PHARMACEUTICAL AND BIOANALYTICAL CHEMISTR	Y			
I	Pharmaceutical Chemistry	-			
II	Analytical method development and validation	-			
III	Bioanalytical Chemistry	_			
IV	Bioinformatics	_			
Paper III: CHEMIST	research methodology, electro analytical ry	and polymer			
I	Research methodology	_			
II	Modern polarographic techniques	Р			
III	Polymer Synthesis, Properties	Р			
IV	Polymer Structure, Properties, Characterization and Applications	Р			
Paper IV:	environmental and green chemistry				
I	Air and Water Pollution	P/I/O			
II	Pollution control technology	P/I/O			
III	Non renewable energy sources	P/I/O			
IV	Environmental policies, Regulation, Assessment and Green chemistry	P/I/O			

M.Sc. – II Analytical Chemistry Semester 3 Course Code –– PSACH4OI Paper I: FORENSIC CHEMISTRY AND TOXICOLOGY

Mod	lule I: Poisons	15 L
1.1	Classification and Types of Poisons: Metallic, Inorganic,	03
	Organic, Volatile, Animal, Plant, Insecticides, Pesticides, etc.	
	their nature, Use, Administration, Fatal dose, fatal period,	
	Symptoms, some common Antidotes Post-mortem findings,	
	Collection and preservation of viscera and other samples	
1.2	Volatile Poisons: Nature, use, administrations, symptoms, post-	04
	mortem findings, fatal dose, fatal period, isolation, detection,	
	qualitative and quantitative estimation of: Acetone, Ether,	
	Oxalic Acid, Phenols, Camphor, Chloral Hydrate, Chloroform,	
	Acetaldehyde Methyl alcohol, ethyl alcohol, illicit liquor,	
	country-made liquor, etc. Analysis by color tests,	
	chromatographic techniques (TLC, FTIR, NMR, GC, GC-MS,	
	etc.)	
1.3	Metallic and Non-metallic Poisons: Nature, use,	08
	administrations, symptoms, post-mortem findings, fatal dose,	
	fatal period, isolation, detection, qualitative and quantitative	
	estimation of metallic poisons including: Lead, Copper,	
	Mercury, Arsenic, Barium, Selenium, Magnesium, Aluminium	
	etc. Non-metallic poisons including: chlorine, bromine, iodine,	
	phosphorus etc. Nature, use, administrations, symptoms, post-	
	mortem findings, fatal dose, fatal period, isolation, detection,	
	qualitative and quantitative estimation. Analysis by colour	
	tests, AAS, FTIR etc.	
<u></u>		

Somanya TRUST

Department: Chemistry

Mod	ule II: Isolation and different methods of extraction	15 L
	Different methods of extraction for poisons from viscera:	07
	Solvent extraction, distillation /steam distillation, micro	
	diffusion, dialysis, dry ashing, wet digestion, modified star-otto	
	method, ammonium sulphate method, residue levels, toxic	
	levels and therapeutic levels, fatal levels of commonly	
	encountered poisons in blood, urine and tissues.	
	Extraction of poisons from blood, urine, stomach washes and	O8
	vomits, food material and toxicological analysis of	
	decomposed materials. Interpretation of toxicological finding	
	and preparation of reports, limitation of method and trouble	
	shooting in toxicological analysis, disposal of analysis samples,	
	some interesting and their importance in view of specific	
	approach in examination.	
Modu	ıle III: Introduction to Cosmetics	15 L
	Introduction, Impact of Cosmetics on skin and hair, Basic	05
	Regulations in cosmetics pertaining to manufacturing and	
	selling	
	Theory and Formulation of Cosmetics: 1 Hair oils 2. Face	05
	powder 3. Gels 4. Creams and lotions. 5. Shampoos	
Mod	ule IV: Analytical Chemistry in Cosmetics	15 L
	Different methods of analysis of Cosmetics, lipid analysis,	07
	heavy metal testing, surfactant analysis, Instrumental	
	evaluation of Cosmetics using pH, Viscosity,	
	evaluation of Cosmetics using pH, Viscosity, Spectrophotometry, Gas Chromatography,	

M.Sc. Analytical Chemistry Syllabus

Analysis of emulsions with pH metre, Viscosity measurements,	07
non- volatile matter by IR spectroscopy, conductivity method,	
Qualitative and quantitative estimation of heavy metal,	
arsenic, lead and iron in emulsions.	
Analysis of Cosmetic raw materials: Qualitative and	06
quantitative estimation of: ethanol, stearic acid, Glycerine,	
water. Basics methods of evaluation of Ash analysis,	
Potentiometric titration, iodometric titration, chloride	
evaluation, sulphate evaluation, alcohol evaluation,	

References

- Curry A.S; Analytical Methods in Human Toxicology, Part II, CRC Press Ohio (1986)
- 2. Krishnamurthy, R., Introduction to Forensic Science in Crime Investigation, 2011, Selective & Scientific Books, New Delhi.
- 3. Clark, E.G.C.; Isolation and Identification of Drugs, Vol. I and Vol. II, Academic Press, (1986).
- 4. Sunshine I; Year book of Toxicology, CRC Press Series, USA (1989 93).
- 5. Michael J. Deverlankoetal: Hand Book of Toxicology CRC Press, USA (1995)
- 6. Prakash M. etal; Methods in Toxicology Anmol Publication, New Delhi (1998)
- 7. Parikh C.K; Text Book of Medical Jurisprudence Forensic Medicines and Toxicology. CBS Pub. New Delhi (1999)
- 8. Balraj S. Parmaretal; Pesticide Formulation, CBS Publishers, New Delhi (2004)
- 9. Reiss C etal; Advance in Molecular Toxicology, Utrecht, Netherlands (1998)
- 10. Morgan B.J.T; Statistics in Toxicology, Clarendon Press, Oxford (1996)

Somanja TRUST

Department: Chemistry M.Sc. Analytical Chemistry Syllabus

- 11. JorgRombkeetal; Applied & Ecotoxicology Lewis publishers NY (1995)
- 12. Shayne C.Gadetal; Acute Toxicology Testing Academic Press California USA (1998)
- 13. Chadha PV; Hand Book of Forensic Medicine and Toxicology, Jaypee Brothers New Delhi (2004) Semester-II FS-IO832
- 14. Turner Paul; Recent Advances in Pharmacology & Toxicology, Churchill Livingstone, Elenburgh (1989)
- 15. Modi, Jaisingh P; Textbook of Medical jurisprudence & Toxicology, M.M. Tripathi Pub. (2001)
- 16. Cravey R.H, Baselt, R.C; Introduction to Forensic Toxicology, Biochemical Pub. Davis C A (1981)
- 17. Working Procedure Manual Toxicology, BPR&D Publication (2000)
- 18. Ballantyne B; General and Applied Toxicology Vol-1-3 2nd Ed., Macmillan, NY (2000)
- 19. Gossel T.A; Principles of Clinical Toxicology 3rd Ed., Roven, NY (1994)
- 20. Grossel S S; Handbook of Highly Toxic Materials handling and Management, Marcel Dekker NY (1995)

M.Sc. – II Analytical Chemistry Semester 3 Course Code –– PSACH4O2 Paper II: PHARMACEUTICAL AND BIOANALYTICAL CHEMISTRY

Mod	ule I: Pharmaceutical Chemistry	15
.1	Introduction to pharmacy, classification of drugs and dosage forms. Routs of drug administrations. Pharmacopeia (IP/BP/USP) and its history	I .
2	QUALITY ASSURANCE OF PHARMACEUTICALS	
	1. Concepts of Quality and Total Quality Management (TQM).	03
	2. Quality Control and Quality Assurance.	
	3. Good Manufacturing Practices (GMP):	05
	3.1 Organization and personnel – Responsibilities and Training.	
	 3.2. Good Laboratory Practices (GLP): Instruments – qualification and calibrations, Protocols, Controls on Animal House, Applications of Computers in Quality Control Laboratory. 3.3. Finished Product Release: Quality Review, Quality Audits, Batch Release document 	
	3.4 Warehousing: Good ware housing practices, Materials Management	
	3.5 Documentation and maintenance of record: Product Development, Standard Operating Procedures, Analytical Specifications and Test Procedures, Analytical raw data. Cleaning methods, Batch Manufacturing Records, Distribution records, Complaints and recalls records, retention of records. 3.6 Qualifications: Air Handling Units, Water System (Potable water, Deionised, Demineralised, Distilled, Purified, and Water for injection)	
	Pharmaceutical regulations: Drugs and Cosmetic Act, DPCO, Intellectual	O2

	Regulatory Affairs: WHO certification procedure, New Drug	03
	Applications (NDA), Abbreviated New Drug Application	
	(ANDA). ICH requirements for registration of Pharmaceuticals	
		4.50
Modu	Ile II: ANALYTICAL METHOD DEVELOPMENT AND DATION	15L
2.1	Concept of Analytical Method development, Analytical	05
2.1		0)
	Method Validation procedure	
2.2	Stability study as per ICH guideline	O5
2.3	Drug impurities and their effects.	05
Mod	lule III: Bioanalytical Chemistry	15
3.1	Ethical issues in clinical trials, origin of ethical issues, ensuring	07
	compliances to ethical issues- ethical committees and their set	
	up-regulatory process of ethical committees- ethical issues	
	to animal studies- compliance to ethical guidelines.	
3.2	Bioavailability and bioequivalence study (BA and BE):	O8
	definition, parameters to evaluate BA and BE, factors affecting	
	BA and BE of drug, evaluating BA/BE of drug, estimating BA/BE	
	parameters of drug.	
Mod	ule IV: Bioinformatics	15
4.1	Database and search tools: Different search engines,	05
	applications, using various libraries, internet application of	
	bioinformatics- inter protocols and search tools, genome and	
	proteome analogues.	
1		

M.Sc. Analytical Chemistry Syllabus

4.2 10 Statistical approach to biological sample, variation in biological samples and their statistical treatment, introduction to datacollection techniques, design of experiment using block Latin square COV, ANOVA, students test, F-test, design, regression analysis with application to standard graphs, nonparametric tests with examples, statistical guidelines from regulatory agencies.

References

- Analytixcal Biochemistry, D, J. Homes and H. Peck, Longman (1983)
- 2. Bioanalytical Chemistry, S. R. Mikkelesen and E. Corton, John Wiley and sons 2004
- 3. Analysis of food and beverages, George Charalanbous, Accademic press 1978.
- 4. Harry's Cosmetology, Longman scientific co.
- 5. Formulation and Function of cosmetics, Sa Jellineck.
- 6. Cosmetic Technology, Saggarin
- 7. Modern cosmetics, E. Thomessen Wiley Inter science
- Encyclopaedia of industrial chemical analysis, snell et al Inter science
- 9. Govt of India publications of food drug cosmetic act and rules.
- 10. Hand book of drug law, Mehta Univ. Book agency Ahmedabad
- 11. Chemical analysis of drugs, Higuchi, Interscience 1995
- 12. Connors Text book of pharmaceuticals Analysis, J wiley 2001

Page 24 of 34

M.Sc. – II Analytical Chemistry Semester 3 Course Code –– PSACH4O3

Paper III: RESEARCH METHODOLOGY, ELECTRO ANALYTICAL & POLYMER CHEMISTRY

Module I: RESEARCH METHODOLOGY	15
Introduction: definition of research, objectives of resea	rch, O2
Types of research, research approaches, Criteria of go	
research.	
The research process: Eight step model of research proc	cess, O3
Steps in planning of research, steps in conducting a research	arch
study.	
,	the O5
literature, Identification and formulation of research probl	em.
The research design: Definition, need for research des	sign,
features of good design, different research designs, B	
principles of experimental designs.	
Measurement and Scaling techniques in resear	rch: O5
Measurements in research, measurement scales, sources	
error in measurement, techniques of develop	
measurement tools, Scaling, Scale classifications, import	
·	
scaling techniques. Processing and data analysis. Chi squ	ıare
test and its significance.	
Module II: Modern polarographic techniques	15 L
2.1 Recapitulation: classical polarography	02
2.2 Cyclic voltammetry	02
2.3 Pulse polarography, different pulse polarograp	phy, O3
square wave polarography	, ,
2.4 Stripping methods- Anodic and Cathodic stripp	oing O4
methods, Adsorptive stripping methods	

Somanya TRUST

Department: Chemistry

2.5	Voltammetry with ultra-microelectrodes	02
2.6	Biamperometric titrations –Karl Fisher Titrations	O2
Mod	ule III: Polymer Synthesis, Properties	15
3.1	Polymer science, fundamental terms, historical outline,	03
	Classification: Based on origin (natural, semi-synthetic,	
	synthetic), The structure(linear, branched, network, hyper	
	branched, dendrimer, ladder, cross linked, IPN), The	
	type of chain(homo chain, hetro chain), The polymerization	
	mechanism (condensation, addition), the thermal behavior	
	(thermoplastic and thermosetting), the form and application	
	(plastics, elastomers, fiber), Polymer structure; Homopolymers,	
	Copolymers, Tacticity, Geometric Isomerism	
3.2	Molecular Weight and Molecular weight distribution: Average	03
	molecular weight, Molecular weight distribution, molecular	
	weight determination by End group analysis, Colligatve	
	property measurement, Light scattering, Ultracentrifugation,	
	Solution viscosity and GPC	
2.2	· · · · · · · · · · · · · · · · · · ·	07
3.3	Polymer Synthesis Step-growth Polymerization, Chain-growth	07
	Polymerization, Polymerization Techniques (Bulk	
	polymerization, solution polymerization, suspension polymerization, emulsion polymerization) Solid state, Gas	
	phase and Plasma Polymerization, Chemical modification, Preparation of polymer Derivatives	
2.4		02
3.4	Polymer Solutions: Criteria for polymer solubility,	O2
	Thermodynamics of polymer solutions, Solubility parameter,	
	Theta temperature	

Mod	lule IV: Polymer Structure, Properties, Characterization	15
	Applications	
4.1	Solid state properties: Amorphous state, Crystalline state,	03
	Thermal transition and properties, Mechanical properties,	
	Visco elasticity and Rubber elasticity	
4.3	Polymer Degradation: Thermal degradation, oxidative and UV	O2
	stability, Chemical and hydrolytic stability,	
4.4	Polymer Technology	
4.4.1	Polymer Additives, Blends and Composites,	O2
	Additives: Plasticizers, fillers, other important additives. Blends	
	and Composites	
4.4.2	•	Ω2
1. 1.2	··	
4.42	properties	02
4.4.3	3 , ,	02
	industrial fiber	
4.4.4	Polymer processing: Extrusion, Molding, Calendaring, Coating	02
	Polymer Rheology: Non Newtonian flow, Melt instabilities,	
	Drag reduction	
	9	
4.5	Polymers and advanced Technologies Membrane Science and	02
	technology, Bio medical engineering, applications in	
	electronics, photonic polymers	

References

- 1. Principles of Instrumental Analysis, D. A. Skoog, F. J. Holler and J.A. Niemann, 5th Edition (1998)
- Instrumental methods of Analysis, H. H. Willard, L. L. Merritt, Jr. J. A.Dean and F. A. Settle Jr 6th Ed CBS (1986).
- 3. Introduction to instrumental analysis, R. D. Braun, McGraw Hill (1987).
- 4. Electrochemical Methods, A. J. Bard and L.R. Faulkner, John Wiley, New YORK, (1980)
- 5. Wilson and Wilson's Comprehensive Analytical Chemistry, Ed. G. Svehla. (A series of Volumes)
- 6. Electroanalytical Chemistry, J.J. Lingane, 2nd Ed Interscience, New York (1958)
- 7. Modern Polarographic Methods in Analytical Chemistry, A. M. Bond, Marcel Dekker, New York, 1980.
- 8. Electroanalytical Chemistry, Ed A. J. Bard and Marcel Dekker, New York, (A series of volumes)
- 9. Techniques and mechanism of electrochemistry, P. A. Christian and A. Hamnett, Blachie Academic and Professional (1994)
- 10. F. W. Billmeyer Jr., Text Book of Polymer Science, 3rd edition, John Wiley and Sons, 1984
- 11. P. Bahadur and N. V. Sastry, Principles of Polymer Science, second edition, Narosa Publishing House, 2005.
- 12. C. E. Carraher, Jr., Carraher's Polymer Chemistry, 8th edition, CRC Press, NewYork, 2010.
- 13. Joel R. Fried, Polymer Science and Technology, Prentice-Hall of India Pvt. Ltd..2000.
- 14. V. R. Gowarikar, H. V. Viswanathan and J. Sreedhar, Polymer Science. New AgeInternational Pvt. Ltd., New Delhi, 1990.
- 15. V.K.Ahluwalia&A. Mishra.PolymerScienc,e A text book,Ane Books Pvt.Ltd,2008.

- 16. R.Sinha, Outline of Polymer Technology manufacture of Polymers, Prentice hallof India Pvt. Ltd. 2000
- 17. F.J. Davis, Polymer Chemistry, Oxford university Press, 2000.
- 18. D.Walton&P.lotimer, Polymer, Oxford university Press, 2000.
- 19. R.Ypung, Introduction to Polymers, Chapman & Hall, reprint, 1989.
- 20. V. Jain. Organic Polymer Chemistry, IVY Publishing House, 2003
- 21. A. Singh, Polymer Chemistry, Campus Book International, 2003.
- 22. J. M. G. Cowie, Polymers: Chemistry and Physics of Modern Materials, 2nd ed.(first Indian Reprint 2004), Replika Press Pvt. Ltd.
 - 23. Research Methodology methods and techniques, C. R. Kothri, 2nd edition, New age International Publishers.
 - 24. Research Methology, a step by step guide for beginners, Ranjit Kumar, Pearson Publications, 2nd edition.
 - 25. AcoffRusell L, Scientific Methods, John Wiley and Sons, 1962

Somanyar TRUST

Department: Chemistry M.Sc. Analytical Chemistry Syllabus

M.Sc. – II Analytical Chemistry Semester 3 Course Code –– PSACH4O4 Paper IV: ENVIRONMENTAL AND GREEN CHEMISTRY

Mod	dule I: Air and Water Pollution	15 L
	Air pollution:	07 L
1.1	Natural and anthropogenic sources of pollution, primary and secondary	03
	pollutants, transport and diffusion of pollutants, gas laws governing	
	the behaviour of the pollutants in the atmosphere.	
1.2	Sampling and analysis of: particulate matter, aerosols, SO2, H2O, NO _X ,	03
	CO, NH3, organic vapours.	
1.3	Effect of pollutants on human beings, plants, animals, materials and on	01
	Water pollution:	O8 L
1.4	Sources of water pollution, basic chemistry of water pollutants, effects	O2
1.5	Determination of water pollution parameters and their significance.	OI
1.6	Physical parameters: colour, pH, Temperature, odour, turbidity,	O2
	density, TOS, TSS,TDS.	
1.7	Chemical parameters- acidity, alkalinity, hardness, DO, COD, BOD, TOC,	02
	THOD, MPN, biological parameters.	
1.8	Heavy metal pollutants like Hg, Pb, Cd, As, Cu, Cr with respect to their	O2
	sources, distribution, speciation, toxic effect, control, treatment.	
Мо	Module II: Pollution control technology	
	Air pollution control technologies: methods to control air pollution in the	05
	environment, Limestone injection and fluidised bed combustion,	
	desulphurisation, catalytic convertor and control of vehicular emission,	
	gravity setting chamber, fabric filters.	

2.1	Solid Waste disposal: solid waste disposal methods- open dumps, ocean	05
	dumping, land-fills, incineration, recycling and reuse, organic	
	pollutants and hazardous waste disposal and management, non-	
	destructive solid waste, biomedical waste.	
2.2	Sewage and waste water treatment system: primary, secondary and	05
	tertiary treatments, measurements of treatment efficiencies. biological	
	treatments-aerobic verses anaerobic treatments, bio augmentation	
	and bio stimulation, biofilms in treatments.	
Mod	dule III: Non renewable energy sources	15 L
3.1	Concept and demand of energy, Growing energy needs, Renewable	02
	and non-renewable sources of energy.	
3.2	Use of alternate energy sources, Wind energy, Solar energy, Nuclear	06
	energy, Tidal energy. Water as source of energy,	
2.2	<i>57</i>	0.4
3.3	Bio fuels production, use and sustainability, use and over exploitation of	O4
	energy sources and associated problems	
3.4	Role of an individual in conservation of natural resources. Equitable use	03
A 4 =	resources for sustainable lifestyles	15 1
	dule IV: Environmental policies, Regulation, Assessment and Green	1) L
4.1	Important environmental laws in India: Article 48A, Article 51 A, and	03
4.1		
	other laws for environmental management.	
4.2	Environmental impact assessment (EIM): need of EIA, scope, objectives,	O4
	types of environmental impacts, steps involved in conducting the EIA	
	studies, techniques- Ad-hoc method, checklist method, overlay mapping	
	method, merits and demerits of EIA studies.	
4.3	Environmental audit: types, objectives, benefits, practice and procedures.	03

M.Sc. Analytical Chemistry Syllabus

4.4 Principle and concept of green chemistry, environmental benign O5 solutions, solvent free systems, SCF, ionic liquids as catalysts and solvents, photochemical reactions, chemistry using microwave, sono-chemistry, electrochemical synthesis, Designing greener processes- inherently safer designs (ISD), process intensification (PI) in process monitoring. Porous phase reactions, heterogeneous catalysis, bio-catalysis, greener methods.

References

- 1. Environmental Pollution Analysis, S. M. khopkar, New Age International publication (2011).
- 2. Water and water pollution (hand book) Ed., Seonard'lCiacere, Vol I to IV, Marcel Dekker inc. N.Y.(1972)
- 3. Water pollution, Arvindkumar, APH publishing (2004)
- 4. Introduction to Potable Water Treatment Processes Simon Parsons, Bruce Jefferson, Paperback publication.
- 5. Guidelines for drinking-water quality, third edition, (incorporating first and second addenda). WHO report.
- 6. Solid waste management, K Sasikumar and SanoopGopi Krishna PHI publication (2009)
- 7. Solid waste management, SurendrakumarNorthen Book Center (2009)
- 8. Handbook of chemical technology and pollution control 3rd Edn Martin Hocking AP Publication (2005).
- Fundamental Concepts of Environmental Chemistry, Second Edition G. S. Sodhi ,
 Alpha Science, 2005
- IO. Chemical analysis of metals ; Sampling and analysis of metal bearing ores: American Society for Testing and Materials 1980 - Technology & Engineering

- 11. Manual of Procedures for Chemical and Instrumental Analysis of Ores, Minerals, and Ore Dressing Products. Government of India Ministry of Steel & Mines, Indian Bureau of Mines, 1979.
- 12. Alloying: understanding the basics, edited by Joseph R. Davis, ASM International (2001).
- 13. Zone refining and allied techniques, Norman L. Parr, G. Newnes Technology & Engineering (1960).

PRACTICALS

Semester IV Course Code -- PSACHP4O1

1) Cosmetic practical's in collaboration with V G Vaze college.

Semester IV Course Code — PSACHP4O2

- 1) Limit tests of Active Pharmaceutical Ingredients (APIs) as per IP,BP and USP.
- 2) Total analysis of APIs like Aspirin, Paracetamol, Sulfamethaxolas per IP, BP and USP.
- 3) To separate toluene and benzene using GC.
- 4) To separate and estimate Co, Mn, Zn and Ni from a solution using HPTLC.
- 5) HPLC-Separation of mixture of esters on HPLC and calculation of HETP of column

Semester IV Course Code — PSACHP4O3

Project and Dissertation

Semester IV Course Code -- PSACHP4O4

- 1) Waste Water analysis: Determination of, BOD, COD, of various water bodies like lake, rivers, wells, creek etc. (minimum 3 different water samples)
- 2) Drinking water analysis: Determination of DO, turbidity, salinity, hardness, alkalinity Microbial contaminants in potable water.
- 3) Estimation of Na+ and K+ from soil samples by Flame Photometry.
- 4) Green synthesis: Acetylation of aniline using zinc dust
- 5) KF alumina mediated Erlenmeyer's synthesis of Azalactone