

K. J. Somaiya College of Science and Commerce, Vidyavihar, Mumbai-400077

Autonomous - Affiliated to University of Mumbai

(Reaccredited by NAAC with Grade A)

Syllabus for M.Sc. (Autonomous- Revised) Semester III and IV Program: M.Sc. Course: Botany (Cytogenetics and Plant Biotechnology)

Credit Based Semester and Grading System With effect from the academic year 2018–2019 & 2020-2021

Preamble

Autonomy has given us the opportunity to frame the syllabus with a blend of Classical and Applied Botany which will open an array of opportunities in Higher Studies, Entrepreneurship, Research and Consultancy. Students will be geared up to get jobs in various industries such as Cosmetic, Pharmaceutical and Horticulture Industry.

M.Sc. Semester II Botany Syllabus

Credit Based and Grading System

To be implemented from the Academic year 2018-2020

SEMESTER III

Course	UNIT	TOPIC HEADINGS	Credits	L /	
Code				Week	
		Paper Title: Instrumentation and Techn	iques		
	Ι	Chromatography and Spectrophotometry		1	
18PS3B001	II	Tracer Techniques and Cytometry		1	
	III	Centrifugation	4	1	
	IV	Microscopy		1	
		Paper Title: Cytogenetics			
	Ι	Gene Mapping		1	
18PS3B002	II	Cell Cycle and Cancer Biology	4	1	
	III	Inborn Errors of Metabolism		1	
	IV	Applied Genetics		1	
		Paper Title: Plant Biotechnology			
	Ι	Plant Tissue Culture		1	
18PS3B003	II	Bioprocess Technology	4	1	
	III	Metabolite Engineering		1	
	IV	Applications of Plant Biotechnology		1	
18PS3BO04		Paper Title: Applied Biotechnology	,		
	Ι	Industrial Biotechnology		1	
	II	Food Microbiology	4	1	
	III	Nano-technology		1	
	IV	Entrepreneurship Skills		1	

Course Code	PRACTICAL HEADINGS	Credits	L / Week
18PS3BOP01	Instrumentation and Techniques	2	4
18PS3B0P02	Cytogenetics	2	4
18PS3B0P03	Plant Biotechnology	2	4
18PS3B0P04	Applied Biotechnology	2	4

M.Sc. Semester II Botany Syllabus

Credit Based and Grading System

To be implemented from the Academic year 2020-2021

SEMESTER IV

Course	UNIT	TOPIC HEADINGS	Credits	L /
Code				Week
		Paper Title: Plant Breeding		
	Ι	Paradigm of crop production		1
20PS4B001	II	Principles and methods of crop propagation		1
	III	Polyploidy in Plant Breeding	4	1
	IV	Distant hybridization in Plant Breeding		1
		Paper Title: Molecular Genetics		
	Ι	Genomics		1
20PS4B002	II	Genomic Research- I		1
	III	Genomic Research –II	4	1
	IV	Proteomics		1
		Paper Title: Recent advances in Immune	ology	
		and Clinical Research	1	
20PS4B003	Ι	Immunology		1
	II	Immuno-Techniques		1
	III	Stem Cell Technology	4	1
	IV	Clinical research		1
		Paper Title: Research Strategy		
20PS4BO04	Ι	Research ethics		1
	II	Tools used in research		1
	III	Commercial aspect of research Agencies for	4	1
	-	Research funding		
	IV	Open Unit		1

<u>SEMESTER III, PAPER I</u>		
Code	Title: Techniques and Instrumentation	Credits
18PS3B001	Learning Objective: Students will be able to design the	04
	experiments which involve the use of various instruments and	
	techniques. It gives an insight about various analytical skills	
	required in the field of	
	research.	
<u>Unit I:</u>	<u>Chromatography and Spectrophotometry</u>	<u>Lectures</u>
	Chromatography – Principles and applications of	(15)
	chromatography (Paper, TLC, Adsorption, Ion exchange, Affinity,	
	Gel filtration, HPTLC, HPLC, GC), General idea about hyphenated	
	techniques in chromatography	
	Spectrophotometry – Principles, Working and applications of ; UV-	
	visible spectrophotometer, Mass spectrometer, NMR	
<u>Unit II:</u>	Tracer techniques and Cytometry	
	Principle and application of tracer techniques in	(15)
	biology, Radioactive isotopes used in Research,	
	Medicine, Industry,	
	Radiation Dosimetry; Geiger Muller and Liquid Scintillation	
	Counter Principle, Working and applications of Flow Cytometer,	
	Principle and application and working of X-ray crystallography	
<u>Unit III:</u>	Centrifugation	
	Principle, Concept of 'g', Rotor types; Fixed Angled and Swinging	(15)
	Bucket, Types of centrifugation (Based on volume and speed),	
	and their applications, Density gradient centrifugation	
<u>Unit IV:</u>	<u>Microscopy</u>	
	Principles, working and applications of ; Electron microscope –	(15)
	Scanning and transmission electron microscopy, Biological	
	sample preparation; Fixation, Embedding, Sectioning and Post-	
	staining, Negative staining, Shadowing, freeze fracturing, Freeze	
	itching, Applications of electron microscopy,	
	Principle, working and applications of Confocal Microscopy	
Practicals:		

- 1. Isolation of Plant Pigments using Column Chromatography and study of absorption spectra.
- 2. To estimate the amount of curcumin from given plant material using TLC/ HPTLC.
- 3. Demonstration of principle and working of HPLC
- 4. Demonstration of principle and working of GC
- 5. Demonstration of different rotor types Fixed Angled and Swinging Bucket.
- 6. Isolation of chloroplast / mitochondria using density gradient centrifugation.
- 7. Study of steps of autoradiography using photomicrograph.
- 8. Study of electron microscope using photomicrograph (SEM and TEM)
- 9. Study of confocal microscope using photomicrograph.
- 10. Industrial visit

Reference Books

- 1. An introduction to practical Biochemistry David T. Plummer, Tata Mc Graw Hill Co. Ltd., Bombay
- 2. Introductory Practical Biochemistry (2001). Ed. S.K. Sawhney and Randhir Singh.
- 3. Practical Biochemistry Sadasivam and Manickam.
- 4. Practical Biochemistry, Principles and Techniques (1995). Ed. Keith Wilson and John Walker.
- 5. Microbiology, Cell Physiology and Biotechnology (2005): P.K. Gupta Rastogi Publications.
- 6. Biophysical chemistry Upadhyay and Upadhyay
- 7. Wiliam and Wilson, Practical Biochemsitry
- 8. Arora Biophysics
- 9. White David Biophysics

<u>SEMESTER III, PAPER II</u>				
Code	Title: <u>Cytogenetics</u>	Credits		
18PS3B002	Learning objective: Recombinant DNA Technology will be	0		
	effectively used by students in disease diagnostics. Use of	4		
	technology at gene level will be used effectively to demonstrate the			
	new trends in research and			
	development.			
<u>Unit I:</u>	Gene Mapping	<u>Lectures</u>		
	Study of gene mapping in Bacteria - Mapping the	(15)		
	genome by Transformation, Conjugation and			
	Transduction, Problems based on			
	Transformation, Conjugation and Transduction for Gene Mapping			

<u>Unit II:</u>	Cell Cycle and Cancer Biology			
	Cell cycle and its checkpoints, Regulation of cell cycle, Role of	(15)		
	cyclins and CDK, DNA damage checkpoints and their regulation,			
	RAS-MAP kinase pathway			
	Cancer – Characteristics of cancer cells, Causes of cancer;			
	Radiation, Chemicals, Virus, Oncogenes; Proto-oncogenes and			
	their conversion,			
	Treatment			
<u>Unit III:</u>	Inborn Errors of Metabolism			
	Inheritance Pattern, Symptoms, therapeutic options and genetic	(15)		
	counselling of disorders of –			
	Sugar metabolism; G-6-PD, Fructosuria, Galactosaemia			
	Amino acid metabolism; Albinism, Alkaptonuria,			
	Phenylketonuria Sulphur containing Amino acid;			
	Homocysteinuria, Cystathioninuria			
	Lipid metabolism; Tay Sachs Disease, Gaucher's			
	Disease, Mucopolysaccharides			
	Vitamin; Folate malabsorption, Methylmalonic aciduria			
	Haemoglobin; Thalassemia, Sickle Cell Anaemia			
<u>Unit IV:</u>	Applied Genetics			
	DNA sequencing – Traditional, Next generation	(15)		
	sequencing Blotting techniques – Southern,			
	Northern, Western, DNA blot, PCR – Types, RTPCR			
	Karyotyping – Nomenclature, G-banding, R-banding, C-banding,			
	High- banding			
	Application of Molecular Markers – RAPD, RFLP, AFLP,			
	ISSR, Microsatellites			
	Molecular Cytogenetics Methods – Principle, Techniques and			
	Applications			
Practicals	0I FISH, UGH, SKY			
1 Drohl	ame based on conjugation transformation			
2 Study	of Barr hody			
2. Study	UI DAIT DUUY			

- 3. Study of Dermatoglyphics; Classification of Dermatoglyphics patterns, Determination of ATD angle, Calculation of Total Ridge Count.
- 4. Pedigree Analysis; Meaning and Symbols used. Determination of inheritance pattern of a trait using given pedigree chart.
- 5. Study of characteristics of cancer cells using photomicrographs
- 6. Squash preparation from mutagen treated root tips for aberrations
- 7. Identification of genetic disorder by chemical tests
- 8. Identification of inborn error in metabolism using flow chart / photomicrographs
- 9. Study of Southern blotting
- 10. Study of molecular markers using photomicrographs

Reference Books

- 1. Lewin B. (2003): Genes VIII, Oxford University Press, New York.
- 2. Primrose, S.B. (1989): Animal Cell Biology 6th Edition(2010)
- 3. Gerald Karp John Wiley & Sons Inc.The Cell: Fifth Edition: (2009) A Molecular Approach, Geoffrey M. Cooper Robert E.Hausman, Sinauer Associates.
- 4. Cell and Molecular Biology (2005)
- 5. P.K. Gupta Rastogi Publications.
- 6. Biotechnology Blackwell Scientific Publication, London.
- 7. Old R.W. and Primrose, S.B. (1989): Principles of Gene Manipulation, Blackwel scientific Publication, London.
- 8. Watson, J.D. et al. (1987): Cell and Molecular Biology, John Wiley Publications, NY
- 9. Freifelder, D. (1993): Molecular Biology, Jones and Bartlett, Publishers, London.

SEMESTER III, PAPER III			
Code	Title: <u>Plant Biotechnology</u>	Credits	
18PS3B003	Learning Objective: Students will be able to develop their own	04	
	agricultural practices. They will be able to formulate the		
	genetically modified varieties of plants and develop the		
	technology which can be		
	used transferred the research from lab to land.		
<u>Unit I:</u>	<u>Plant Tissue Culture</u>	<u>Lectures</u>	
	Micro-propagation and Clonal propagation, Somaclonal	(15)	
	variation, Somatic Hybridization		
	Suspension Culture – Enhancement of product formation by		
	biotic and abiotic elicitors		
	Biotransformation using cell cultures, Hairy root culture		
<u>Unit II:</u>	Bioprocess Technology		

	Designing of bioreactors, Pneumatically agitated bioreactors,	(15)			
	Comparative study of different bioreactors, Photo-bioreactors,				
	Fed batch, semi-continuous and continuous bioreactors				
Genetically modified plant cells to produce valuable secondary					
	metabolites				
	Applications in plant improvement – Herbicide tolerance, Virus				
	resistance, Luciferase and Gus gene, Antibiotic resistance,				
	Nuclear male sterility				
<u>Unit III:</u>	Metabolite Engineering				
	Metabolite Engineering in Plants – Introduction, Strategies for	(15)			
	Metabolic Engineering in plants.				
	Engineering primary metabolic pathways – Carbohydrate				
	metabolism, Amino acid and polyamine metabolism, Lipid				
	metabolism.				
	Engineering secondary metabolic pathways for Alkaloids,				
	Terpenoids, Flavanoids, Lignins, Stilbene phytoalexins				
	Engineering novel metabolic pathways, Metabolic engineering for				
	human health				
<u>Unit IV:</u>	Applications of Plant Biotechnology				
	Food Industry – Sweeteners, Dying Industry – Madder root,	(15)			
	Pharmaceuticals – Plantibody, Glycerol from algae,				
	Vitamin C, Essential oil, Flavouring agent				
Practicals					
1. Isolation of protoplast using enzymes					
2. Micro-	2. Micro-propagation using suitable explant.				
3. Initiation of organogenesis to study the effects of different concentrations					
auxins and cytokinin's.					
L					

- 4. Establishment of callus from any plant and production of secondary metabolite.
- 5. Study of bioreactors using photo-micrographs.
- 6. Production of capsaicin using callus culture and its determination by TLC.

Reference Books

- 1. Stanburry Whittakar Industrial Biotechnology
- 2. Razdan Plant Tissue Culture
- 3. Ramawat K.G. Plant Biotechnology
- 4. Singh B.D. Biotechnology

<u>SEMESTER III, PAPER IV</u>			
Code	Title: Applied Biotechnology	Credits	
18PS3B004	Learning Objective: Students will be able to correlate the	04	
	theoretical		
	principles with industrial production. This study enhances the		
	entrepreneurial skills among students.		
<u>Unit I:</u>	Industrial Biotechnology	<u>Lectures</u>	
	Industrial Production and Applications of	(15)	
	Following – Organic acids:- Citric acid, Lactic		
	acid		
	Amino acids:- Lysine, Aspartic		
	acid Enzymes:- Pectolytic,		
	Proteases Food industry:-		
	Single Cell Protein Vitamins: -		
	B12		
	Environment:- Biosensors		
<u>Unit II:</u>	Food Microbiology		
	Food Spoilage and general principles underlying spoilage of	(15)	
	food – Intrinsic parameter, Extrinsic parameter, Microbial		
	spoilage of food, Food borne diseases caused by bacteria,		
	fungi.		
	Quality control of food – Evaluation of food quality		
	Food preservation – Physical Methods; Radiation, Heat,		
	Freezing, Chemical Method		
<u>Unit III:</u>	Nanotechnology		
	Introduction, Synthesis of Nanomaterial; Particle size	(15)	
	analyser- Principle and applications.		
	Biological methods, Use of microbial system & plant extracts,		
	Use of proteins & templates like DNA.		
	Applications of Nanomaterial in Food, Cosmetics, Agriculture,		
	Environment management and Medicine.		
<u>Unit IV:</u>	Entrepreneurship Skills		
L			

	Concept of Entrepreneur, Entrepreneurship, Need and	(15)		
	Importance. Factors influencing entrepreneurship,			
	Necessities and Qualities of successful entrepreneur.			
	Development of entrepreneur – Roll of Government and			
	Financial institutions, Rising money from venture			
	capitalist, Government grants, subsidies			
	Product selection and ideas, Project planning and formulation			
	Market Research and marketing of product			
Practicals:				
1. Producti	on of Citric acid using Aspergillus niger.			
2. Producti	on of Proteases enzymes using suitable fungi.			
3. To test th	ne quality of Milk by MBRT and RRT.			
4. To deter	mine the quality of Milk by Phosphatase.			
5. To isolat	e the spoilage causing organism from spoiled food by suitable tec	chnique.		
6. Synthesis	s and Analysis of Silver nanoparticles.			
7. Producti	on of single cell protein using <i>Spirullina</i> culture by photo bioreac	tor.		
8. Industria	l Visit			
Reference E	<u>Books</u>			
1. Industria	l Microbiology: Prescott and Dunn			
2. Industria	ıl Microbiology: L. E. Casida. JR.			
3. Industria	l Microbiology: A.H.Patel			
4. Modern	Food Microbiology: James Jay			
5. Food Microbiology: Fraizer				
6. Industrial Biotechnology: Indu Shekhar Thakur				
7. Nduka O	kafor: Modern Industrial Microbiology and Biotechnology, Scienc	ce		
publishe	rs, Enfield, New Hampshire 03748, USA, 2007.			
8. Sharon M	Iadhuri, Nanotechnology			
9. Kurup –	Entrepreneurship			
	· · ·			

SEMESTER IV, PAPER I			
Code	Title: Plant	Credits	
	Breeding		
20PS4BO01	Learning Objective:	04	
	1) To identify the geographical origin of plant species.		
	2) To emphasize on the contribution of agricultural research		
	Institutes in modern agriculture.		
	4) To outline the methods for production of hybrid varieties		
	of plants.		
Unit I:	Paradigm of crop production	Lectures	
	i. History of plant breeding	(15)	
	ii. Objectives of plant breeding, characteristics improved by		
	plant breeding;		
	iii. Patterns of Evolution in Crop Plants- Centres of Origin-		
	biodiversity and its significance.		
	iv. Types of gene actions and implications in plant breeding;		
	v. Plant introduction and role of plant genetic resources in		
	plant breeding.		
<u>Unit II:</u>	Principles and methods of crop propagation		
	Development of Plant Breeding strategies- (5 L)	(15)	
	i. Contribution of Research institute in plant breeding-		
	ICAR, NBPGR, IARI, CDRI, CPRI, IFGTB		
	Contribution of Scientific community in Plant Breeding.		
	ii. Concept of plant ideotype and its role in crop		
	improvement.		
	iii. Contribution of male sterility in commercial exploitation.		
	iv. Role of Molecular markers in plant breeding for marker		
	assisted selection of specific phenotypes viz Salt		
	tolerant. Thermo-tolerant. Disease resistance, etc.		
	Crop propagation (10 L)		
	i. Mass Selection-Applications of mass selection, procedure		
	of mass selection, Merits and Demerits of mass selection		
	ii. Pureline Selection-, Applications of pureline selection, A		
	general procedure for pureline selection. Advantages of		
	pureline selection, Disadvantages of pureline selection.		

	iii.	Pedigree Method- Applications of pedigree method,	
		Procedure for pedigree method, Merits and Demerits of	
		pedigree method.	
	iv.	Bulk Method-Applications, procedure for bulk method,	
		Merits and Demerits of bulk method.	
	v.	Backcross Method- Selection of parents, procedure of	
		backcross method, Applications of the backcross method,	
		Merits and Demerits of backcross method.	
<u>Unit III:</u>	Poly	ploidy in Plant Breeding	
	i.	Types of changes in chromosome number, Heteroploidy,	(15)
		Aneuploidy, Morphological and cytological	
		characteristics.	
	ii.	Applications in crop improvement	
	iii.	Autopolyploidy- Morphological and cytological	
		characteristics, Role of autopolyploidy in evolution,	
		Applications and limitations	
	iv.	Allopolyploidy- Morphological and cytological	
		characteristics, Role of allopolyploidy in evolution,	
		Applications and limitations	
	v.	Mutation breeding- Concept of mutation, Mutagen,	
		Procedure of mutagen breeding, Applications and	
		limitations of mutation breeding.	
<u>Unit IV:</u>	Dist	ant hybridization in Plant Breeding	
	i.	History, Technique of production of distant hybrids	(15)
	ii.	Sterility in distant hybrids, Consequences of segregation,	
	iii.	Applications and limitations of distant hybridization.	
	iv.	Clonal Selection and Hybridization- Characteristics of	
		asexually propagated crops, genetic variation within	
		clone, Methods of improvement of asexually propagated	
		crops, Clonal selection	
	v.	Merits and Demerits of clonal selection,	
	vi.	Hybridization- interspecific hybridization in	
		improvement of clonal crops.	

References:

- 1. B D Singh. Plant Breeding, Kalyani Publications, New Delhi.
- 2. Kerala Agricultural University Syllabus
- 3. Agriculture University Kota. B.Sc. (hon.)Agriculture 2018-2019. (<u>http://aukota.org/wp-content/uploads/2014/01/Syllabus-F.pdf</u>)
- 4. M. Sc. (Agri.) Syllabus in Jananayak Chandrashekhar University, Ballia, Uttar Pradesh.
- 5. Post graduate syllabus in Plant Sciences, Indian Council of Agriculture Research, Education Division, New Delhi, April 2009. (<u>https://icar.org.in/files/edu/Revised-PG-Course-Curricula-and-Syllabi/Plant%20Sciences%2030.4.2009.pdf</u>).
- M.Sc. Agriculture Syllabus in Jhansi University. (<u>https://www.bujhansi.ac.in/pdf/syllabus/syllabus2016/MSC AG Genetics Plant</u> %20Breeding.pdf)

SEMESTER IV, PAPER II		
Code	Title: Molecular Genetics	Credits
20PS4B002	Learning Objective:	04
	1) To study the sequence of genes in human genome.	
	2) Determine the function of genes and the elements that	
	regulate genes throughout the genome.	
	3) 10 get an overview of genetic variation such as SNPs	
	In prediction of a person's risk of particular diseases and response to certain medications	
	4) To summarize the types of proteomics with reference to	
	their application.	
<u>Unit I:</u>	Genomics	<u>Lectures</u>
	Organization of Genome, Human Genome Project, Human	(15)
	Mitochondrial Genome, Comparative Genomics with suitable	
	examples , Metagenomics, Genome evolution- case study	
<u>Unit II:</u>	Genomic Research- I	
	Single nucleotide polymorphisms	(15)
	Types, Frequency, Analytical methods for detection of SNP,	
	Significance and Applications.	
	Encyclopedia of DNA elements (ENCODE) project	
	Introduction and project overview, Encode project data,	
	Accessing encode data, Working with encode data, Encode data	
	analysis, Future plan and challenge	
<u>Unit III:</u>	Genomic Research –II	

	Pharmacogenomics	(15)
	Introduction, Drug metabolizing enzymes, Predictive	
	prescribing, Applications	
	Nutrigenomics	
	Introduction-Nutrigenomics and Nutrigenetics, Nutrigenomics	
	and disease (Jaundice), disorders - (Obesity, Diabetes,	
	Cardiovascular disease, Osteoporosis), Cancer, Nutrigenomics	
	and diet supplementation, Concept of personalized nutrition	
Unit IV.	Ductoomics	
<u>Unit IV:</u>		
	Introduction- Definitions, Proteomic Origins	(15)
	Protein interactions	
	Types of proteomics - For Expression, Structure, Function	
	Database utilization - Peptide mass fingerprinting database,	
	amino acid sequence database, de novo peptide sequence	
	information,	
	Applications of Proteomics - Characterization of Protein	
	Complexes, Expression Profiling	
	Recent Update - any recent publication as case study	
	{Example- Manumycin polyketides act as molecular	
	glues between UBR7 and P53, Yosuke Isobe,	
	MikikoOkumura[]Daniel K. Nomura Nature Chemical	
	Biology, 1-10}	
References -		

1. <u>https://ghr.nlm.nih.gov/primer#genomicresearch</u>

2. <u>https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.10010</u> 46 A User's Guide to the Encyclopedia of DNA Elements (ENCODE)

3. <u>https://www.researchgate.net/publication/307607140</u> Overview of nutrigenomics and epigenomics: mechanisms and relevance .M. J. Dauncey Wolfson College, University of Cambridge, UK

<u>https://www.researchgate.net/publication/10824883</u> Nutrigenomics: goals and strategies

5. Sandosh Padmanabhan(2014). Handbook of Pharmacogenomics and Stratified Medicine. Academic Press.

6. Tang BH (2016) Single Nucleotide Polymorphism (SNP) and Its Preview. J Cell Signal 1: 129.

7. V. S. Neeha and Priyamvadah Kinth.Nutrigenomics research: a review J Food Sci Technol. 2013 Jun; 50(3): 415–428.

Tawheed Amin, Hemanta Mahapatra, Suman Vikas Bhat and S P S Gulleria
 Application of Nutrigenomics in Food Industry: A Review Indian Horticulture Journal;
 2(3-4): 54-59, July-Dec (2012) Research Review

<u>SEMESTER IV, PAPER III</u>		
Code	Title: Recent advances in	Credits
	Immunology and Research	
20PS4B003	Learning Objective:	04
	1) To overview the sections of immune system	
	2) To explain biochemical aspects of antigen-antibody	
	interactions.	
	3) To demonstrate different immunotechniques.	
	4) To explain different aspects of clinical research	
<u>Unit I:</u>	Immunology	<u>Lectures</u>
	Phylogeny of immune system	(15)
	Innate and acquired immunity	
	Cells of immune system	
	Nature and biology of antigens	
	Production of antibodies by plant cells and organs.	
<u>Unit II:</u>	Immuno-Techniques	
	Primary Ag-Ab interaction-RIA, ELISA, Immuno-fluorescence,	(15)
	Western blotting, SRID, ELIspot, PCR-ELISA.	
	Secondary Ag-Ab interaction-precipitation, Agglutination,	
	Complement fixation reaction.	
<u>Unit III:</u>	Stem Cell Technology	
	Types of stem cell, Isolation, Maintenance of stem cell,	(15)
	Applications, Limitations - Ethical considerations	
	Current progress- Placenta saliva swab to create database,	
	Embryonic stem cell banking and therapy, Dental pulp cells-	
	isolation and culture methods, Applications	
	Fundamentals of tissue engineering, Future of tissue engineering	
	with stem cell research	
<u>Unit IV:</u>	Clinical research	

Introduction to clinical research	(15)
Ethics and guidelines for clinical research	
Pharmacovigilance and drug development	
Regulation in clinical trials	
Clinical trials conduct, compliance and quality assurance	
Clinical data analysis and management	

References:

- Immunology, Kuby, 7th Ed, W. H. Freeman and Company, New York, International Edition, ISBN-13: 978-14641-3784-6, ISBN-10: 1-4641-3784-6
- 2. <u>https://www.immunology.org/public-information/bitesized-</u> <u>immunology/experimental-techniques/enzyme-linked-immunosorbent-assay</u>
- 3. <u>https://www.bio-rad-antibodies.com/an-introduction-to-elisa.html</u>
- Principles and Techniques of Biochemistry and Molecular Biology, Wilson and Walker, 7th Ed, Cambridge University Press, ISBN 978-0-521-51635-8 (hardback) – ISBN 978-0-521-73167-6 (pbk.)
- 5. <u>https://www.sciencedirect.com/topics/neuroscience/flow-cytometry</u>
- 6. <u>https://www.thermofisher.com/in/en/home/life-science/cell-analysis/cell-analysis-learning-center/molecular-probes-school-of-fluorescence/flow-cytometry-basics/flow-cytometry-fundamentals/how-flow-cytometer-works.html</u>
- 7. BioFiles 3-11 (2008) Innovative Solutions for Stem Cell Biology, https://www.sigmaaldrich.com/technical-documents/articles/biofiles/innovativesolutions.html?gclid=EAIaIQobChMIpsTV0pC46gIVwRErCh3f1QLNEAAYASAAEgIaNv D BwE
- 8. BMJ 319 (1999) Stem Cell Technology, Fontes and Thompson.
- 9. <u>https://www.stemcell.com/</u>
- 10. Human Reproduction Open (2019) 1-17 Two decades of embryonic stem cells- A historical overview, Eguizabal et al
- Frontiers in cells and Developmental Biology 7 (2019) 189 A revised perspective of skeletal stem cell biology, Ambrosi et al
- 12. Stem Cell Research and Therapy 10-168 (2019) Stem Cells Past Present and Future, Zkrzewski et al
- 13. World J of Stem Cells 11-1 (2019) 13-33 Application of stem cells and bioprinting for potential treatment of diabetes, Kumar et al.
- 14. https://www.fda.gov/patients/clinical-trials-what-patients-need-know/what-aredifferent-types-clinical-research
- 15. https://www.nia.nih.gov/health/what-are-clinical-trials-and-studies
- 16. The National Academics, The Role of Purchasers and Payers in the Clinical Research Enterprise: Workshop Summary, ISBN: 0-309-59418-9, 120 pages, 6x9, (2002), https://www.ncbi.nlm.nih.gov/books/NBK220717/
- 17. Ind J Pharm Edu Res 45-2 (2011) Gandhi, Clinical Research Methodology

18. International Journal of Clinical Medicine, 5 (2014) 1374-1383, Clinical Trial Phases, Mahan V.

19. <u>https://www.researchgate.net/publication/331250330</u>, Planning and Conducting Clinical Research: The Whole Process, Chew B H

SEMESTER IV, PAPER IV		
Code	Title: Research	Credits
	Strategy	
20PS4BO0	Learning Objective:	04
4	1) To acquire knowledge of citation rules.	
	2) To avoid Plagiarism and identify when a work is	
	plagiarized.	
	3) To acquire skill in free accessible web search engine.	
	4) To link between higher education and research.	
	5) To acquaint learner with modern research.	
<u>Unit I:</u>	Research ethics	<u>Lectures</u>
	Introduction, What causes plagiarism?	(15)
	Tools to detect plagiarism- What is a plagiarism checker?	
	Need for checkers	
	Benefits of using Plagiarism checkers.	
	 Commonly used checkers like—Turnitin, Write check, 	
	Unicheck	
	Case study	
	Kinds of plagiarism, Prevention of Plagiarism	
	Types of Licenses, Common Creating licenses, Copyright filing	
<u>Unit II:</u>	Tools used in research	
	Excel for data analysis, Google scholar, Jgate, ORCID	(15)
	Zotero, LaTeX, Google Patent, Small Seo tool	
	Impact Factor, H- Index, I10 I 20 , G Score	
Unit III:	Commercial aspect of research Agencies for Research	
	funding	
	Academic research- universities (BCUD), UGC, DAE-BRNS.	(15)
	Industrial research -AYUSH, GAIL, CSIR, DBT, ICMR.	
	Research in foreign countries-DFG (German Research	
	Foundation).	
	Research schemes proposed by DST, DBT,UGC, RUSA, etc	
	Government Schemes and policies	
	Case study	

<u>Unit IV:</u>	Open Unit: Detail discussion on current topic	
	Example: Research in Covid 19	(15)

References:

- 1. J Travel Med 27-2 (2020) <u>The reproductive number of **COVID-19** is higher compared</u> to **SARS coronavirus**, Liu Y et al, doi: 10.1093/jtm/taaa021. PMID: 32052846
- 2. Eur Rev med Pharmcol Sci 24 (2020) 2006-11 Kannan et al Covid19 Recent trends
- 3. Int J Infect Dis 96 (2020)710-714 From SARS to Covid19: What we have learned about children infected with COVID-19, Zhou et al
- 4. Monaldi Archives of Chest Diseases 90 (2020) 1298 Covid 19 A Review, Mahabhavi et al

Different Modes of Internal Assessment

- > Projects
- ➤ Case Study
- Presentations
- > Assignments
- Online Quizzes using Google forms
- Interactive videos
- ➢ H5P tools
- Swayam NPTEL course